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Background and Objective: Elevated levels of UCB due to overproduction and/or defective clearance 
can severely impact the CNS leading to fatal encephalopathy or kernicterus spectrum disorders (KSD) 
associated with motor and auditory impairments. Still unknown is the preferential distribution of UCB in 
specific CNS regions and the long-lasting disabilities derived from severe neonatal hyperbilirubinemia. 
One of the aspects that remains uncertain is how unconjugated hyperbilirubinemia determines neural cell 
sequelae that may predispose to the development of neurodevelopmental, psychiatric, and neurodegenerative 
disorders. How UCB damages neurons and glial cells, and the injuries that can occur in more susceptible 
brain areas, thus potentially leading to permanent CNS dysfunction, is far from being clear. In this review, 
we summarize the neuropathological effects of unconjugated bilirubin (UCB) and its free species (Bf) with 
a focus on the dysregulation of the central nervous system (CNS) cell homeostasis and subsequent toxic 
paracrine signaling effects. Direct or indirect actions of glial cells on UCB-induced neurodegeneration are 
also critically reviewed.
Methods: An exhaustive electronic search of the literature was performed with PubMed and Google 
Scholar on bilirubin neurotoxicity-related topics to identify relevant articles from 1947 to 2021. Languages 
other than English, German and French were excluded.
Key Content and Findings: We specifically focused on the neurotoxic species of UCB and 
provided neuro- and gliocentric views in the context of neurodevelopmental alterations. Potential novel 
neuroprotective and regenerative strategies, including the use of extracellular vesicles (EVs) and their loading 
with medicines or microRNAs, were also addressed. Our perspectives on the future application of human 
advanced models and EVs to investigate UCB-induced neurotoxicity/KSD and subsequent pathological 
insults in early-life and lasting outcomes are outlined. 
Conclusions: We believe that this information could provide the next step for newborn screening using 
promising noninvasive biomarkers in the era of precision medicine to develop new and combinatorial 
therapeutic approaches at the forefront of translation.
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Introduction

The features of bilirubin deposition in the brain were 
initially described by Orth (1) and later designated as 
”kernicterus” by Schmorl (2) in the last quarter of the 19th 
century. Today, more than a century later, and despite the 
extensive research, multiple management recommendations 
and guidelines (3-8), cases of acute bilirubin encephalopathy 
(ABE) are still being described during the early neonatal 
period (9,10), particularly in low- and/or middle-income 
countries (11-14). Recent reviews recapitulate the spectrum 
of disorders associated with bilirubin neurotoxicity and 
kernicterus, highlighting the toxic role of elevated free 
bilirubin (Bf) levels (15), i.e., unconjugated bilirubin not 
bound to its main blood transporter, albumin. They also 
emphasize several risk factors and co-morbidities that can 
lead to increased concentrations of serum albumin-bound 
unconjugated bilirubin (UCB), accounting for elevated Bf 
levels and subsequent neurotoxicities (Figure 1). Moreover, 
the available preventive and treatment options, as well as 
the recommendations are identified to manage ABE and 
kernicterus spectrum disorders (KSD) (16-20).

With regards to the neurotoxic actions of UCB, four 
main factors, acting alone or in combination, are implicated 
as illustrated in Figure 1: increased bilirubin production, 
impaired hepatic uptake, reduced bilirubin conjugation, 
and defective liver clearance (21). The excessive production 
of UCB in the first days of life primarily derives from the 
relative polycythemia and breakdown of hemoglobin, as 
well as from the increased red blood cell (RBC) turnover 
in neonates, with a rate of 6 to 8 mg/kg/day, more than 
twice the production as adults (22). Bilirubin is generated 
from heme degradation, catalyzed by heme-oxygenase 
(HO) to form biliverdin, which is then metabolized by 
biliverdin reductase (BVR) to Bf or UCB (if bound to 
albumin) (17). Other risk factors are implicated in UCB 
overproduction. This is the case for hemolytic diseases, e.g., 
glucose-6-phosphate dehydrogenase (G6PD) deficiency 
with increased erythrocyte fragility and hemolysis (23,24). 
The relative prevalence of G6PD deficiency (25), associated 
with neonatal hyperbilirubinemia (26) and prematurity (27), 
makes both conditions significant risk factors. Notably, 
UCB can bind to RBCs (28,29) causing shape alterations 
and increased fragility that culminate in increased 
hemolysis, further enhancing UCB and Bf production 
(Figure 1) (30-33).

UCB dissociates from albumin before entering the liver 
and may be impacted by decreased delivery or by inefficient 

hepatocyte uptake due to sinusoidal protein polymorphisms 
(21,34). Low hepatic gene expression of the bilirubin uridine 
diphospho-glucuronosyltransferase 1A1 (UGT1A1), as well 
as UGT1A1 enzyme deficiency in Gilbert’s disease (partial) 
and Crigler-Najjar types I (total, CN1) and II (almost 
total, CN2) syndromes, impairs bilirubin conjugation with 
(mostly) glucuronic acid (35-37), thus leading to increased 
levels of UCB and Bf in circulation. Enzyme polymorphisms 
may also play a role (35,38). Of note, CN1 syndrome 
leads to fatal outcomes with kernicteric features, unless 
liver transplantation is performed (39). Finally, excretion 
of conjugated bilirubin into the bile, mainly mediated by 
multidrug resistance-associated protein 2 (MRP2), is a 
key player for conjugated bilirubin elimination from the  
liver (40) and stool output (41). MRP2 deficiencies may 
cause the re-uptake of conjugated bilirubin into circulation 
(Dubin-Johnson syndrome) and the presence of cholestasis 
may lead to its elimination in urine (42).

Other main risk factors for bilirubin-induced neurological 
damage (BIND) during neonatal hyperbilirubinemia 
are: (I) prematurity that affects all the UCB clearance 
mechanisms and increase neural cell susceptibilities to its 
harmful effects (10,43-47); and (II) hypoxia-ischemia (48),  
sepsis (49), hypoalbuminemia (50) and acidosis (31,51,52) 
that contribute to increase Bf concentrations and its 
entrance in the central nervous system (CNS) after crossing 
the blood-brain barrier (BBB) (Figure 1), causing neuronal 
damage and glial activation.

Breastfeeding has also been associated with an increased 
incidence of hyperbilirubinemia, but the causes for “breast 
milk jaundice” or “breastfeeding failure jaundice” are 
not completely clear (53,54). However, an association 
with intestinal flora colonization status has been recently 
described (55,56). This may be important since it has been 
reported that the lack of microbiota in jaundiced babies may 
lead to the reabsorption of non-polar UCB in the intestine 
and may contribute to the development of BIND (57).

A less considered risk factor for UCB neurotoxicity 
in neonates is the apparent lack of societal awareness for 
this condition (58), together with early discharge policies 
practiced by birthing centers and maternity services that 
impair early detection and timely therapeutics, which are 
crucial to prevent UCB encephalopathies (59).

In summary, newborn infants overproduce UCB and 
have a decreased ability to eliminate UCB, thus increasing 
their susceptibility for UCB-induced neurodegeneration, 
oligodendrocyte dysfunction, astrocyte reactivity, and 
microglia activation in specific brain regions, which can lead 



Pediatric Medicine, 2021 Page 3 of 24

© Pediatric Medicine. All rights reserved. Pediatr Med 2021;4:34 | https://dx.doi.org/10.21037/pm-21-37

to neurological sequelae with different severe long-term 
morbidities.

This review summarizes the concepts associated with UCB, 
Bf, and erythrocyte-linked neurotoxic species, using descriptive 
neuro- and gliocentric views, and addressing the key role of 
intercellular paracrine dysregulation to homeostatic imbalance 
and BIND. Future research using human advanced models and 

extracellular vesicles (EVs) to clarify pathological mechanisms 
associated with BIND and long-term sequelae are outlined, 
and the relevance of their use as new therapeutic tools in 
personalized medicine are also addressed.

We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
pm.amegroups.com/article/view/10.21037/pm-21-37/rc).

Figure 1 Schematic representation of bilirubin production, transport, conjugation, and clearance, highlighting the distribution of the 
circulating species, risk factors and passage across the blood-brain barrier into the brain. Bilirubin is mainly produced by the degradation 
of hemoglobin prosthetic group, Heme from erythrocytes reaching its lifespan (old), by the enzymatic action of heme oxygenase (HO), 
orignates biliverdin, which is then immediately converted to bilirubin by biliverdin reductase (BVR). Bilirubin not bound to albumin (free, 
Bf) is in equilibrium with those bound to albumin (UCB), which is transported from the blood circulation into the liver for conjugation 
with the glucuronic acid mediated by the bilirubin uridine diphosphoglucuronosyltransferase 1A1 (UGT1A1), to form conjugated bilirubin 
(CB). CB is then excreted into bile and its final degradation products eliminated in feces. In cholestatic conditions, CB may return into the 
circulation and be excreted in urine. When UCB is overproduced and exceeds the albumin binding capacity, Bf concentration raises, binds 
to erythrocytes and causes hemolysis, as well as crosses the blood-brain barrier, mainly in the presence of risk factors like acidosis, hypoxia-
ischemia, sepsis, and hypoalbuminemia. In the brain, Bf interacts with neurons and glial cells (astrocytes, microglia, and oligodendrocytes) 
causing several neuropathological sequelae.

https://pm.amegroups.com/article/view/10.21037/pm-21-37/rc
https://pm.amegroups.com/article/view/10.21037/pm-21-37/rc
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Methods 

We conducted an exhaustive literature search on the 
electronic databases including PubMed, MEDLINE and 
Google Scholar, from January 1947 to April 2021, to 
identify all relevant studies mentioning serum bilirubin 
in relation to neonatal hyperbilirubinemia, bilirubin 
encephalopathy and kernicterus. A combination of the 
search terms included UCB-induced neurodegeneration, 
unbound or free bilirubin, bilirubin binding to albumin, 
bilirubin binding capacity of albumin, bilirubin-induced 
neurotoxicity, red cell binding of bilirubin, erythrocyte-
bound bilirubin, neonatal jaundice, bilirubin metabolism 
in infants, bilirubin uptake, conjugation and clearance 
by the liver, bilirubin encephalopathy, kernicterus, 
oligodendrocytes, astrocytes, neurons and microglia. 
Languages other than English, German and French were 
excluded. Selection included clinical, animal and cellular 
studies. The selection process was conducted by both 
Authors, following agreement on search criteria, and 
selected references shared in a common database. The 
reference list also included studies identified manually, and 
studies referenced for other purposes.

Pathological implications of neurotoxic bilirubin 
species

Before addressing the neuropathological effects of the 

increased concentrations of UCB and Bf, it is perhaps 
worthwhile to describe the controversies regarding the 
beneficial and harmful effects of UCB, which directly 
depend on its “physiological” (slightly elevated) or 
markedly increased concentrations. The pleiotropic role 
of UCB at low levels as an antioxidant (60-62), though 
still controversial (63,64), and its anti-inflammatory effects 
(65-67), have contributed to a poor understanding, and 
sometimes even a dismissive attitude towards the harmful 
consequences of high UCB levels, either in neonatal 
life or as a consequence of inherited unconjugated 
hyperbilirubinemias, such as Gilbert, CN1 and CN2 
syndromes. As an example, a shift between antioxidant 
and pro-oxidant actions may occur between intracellular 
UCB values of  7 ng/mg protein and those above  
25 ng/mg protein, respectively (68). The dual effects of UCB  
(Figure 2) are even more difficult to understand when 
several therapeutic approaches have used low concentrations 
of UCB to treat several pathologies based on its antioxidant 
and anti-inflammatory properties (66,69-74). However, 
the harmful effects of UCB at high concentrations and the 
severe neurological consequences that unfortunately still 
occur should not be disregarded (75).

For that reason, we will focus on neuropathological 
issues, brain lesions and sequelae resulting from ABE and 
chronic kernicterus most often associated with bilirubin 
levels of 19 mg/dL or higher (16), which have been mostly 
addressed (53). In contrast, the life-long consequences of 
moderate levels of total or UCB, such as those surpassing 
5 mg/dL in the first 2 to 4 days and up to values below 
18 mg/dL (76,77) on the CNS are sti l l  unknown. 
One consequence is the association between neonatal 
hyperbilirubinemia and autism spectrum disorder (78), 
which has been only suspected before or even denied (53,79). 
Auditory brainstem function is also impaired in neonates 
with hyperbilirubinemia (80), and hearing screening tests 
have shown a relevant association between bilirubin levels 
and abnormal auditory activity in jaundiced newborns (81) 
that have been associated with KSD (5,16,82,83). As would 
be expected, the risk for auditory damage is increased 
in preterm infants, where bilirubin levels considered 
“safe” for term babies can lead to irreversible lesions (84). 
Alterations of the sensorimotor system due to elevated 
UCB concentrations assessed at several developmental 
ages have been reviewed by Lunsing (85). Abnormalities 
in the visuocortical function were observed at 3 months 
of age in children who had total bilirubin levels between 
10 and 25 mg/dL at postnatal (PN) day 3 (86). Delayed 

Low UCB/Bf levels High UCB/Bf levels

Protective
Antioxidant properties

Deleterious
Neurotoxic effects

Figure 2 The beneficial and harmful double-edge sword effects of 
unconjugated bilirubin (UCB) in oxidative and neuroinflammatory 
conditions accordingly to its low and high concentrations. When 
at physiological or slightly elevated levels, UCB and its free 
species (Bf) not bound to human serum albumin exert antioxidant 
and anti-inflammatory protective mechanisms. In contrast, their 
increased concentrations are deleterious to the brain, involving 
neurodegeneration and glial activation or even causing death or 
permanent severe outcomes.



Pediatric Medicine, 2021 Page 5 of 24

© Pediatric Medicine. All rights reserved. Pediatr Med 2021;4:34 | https://dx.doi.org/10.21037/pm-21-37

neurodevelopmental outcomes at 6 months (87) and 1 
year of age (88) were also found in term newborns, even 
with moderate hyperbilirubinemia accordingly to recent 
prospective cohort studies performed in India.

Though usual ly  not  associated with cognit ive 
abnormalities, the literature is divided on this issue  
(89-93). Neurobehavioral disabilities with lower rates 
of school completion and full-time employment, as well 
as reading difficulties, were related to the existence of 
hyperbilirubinemia (94). Interestingly, a recent study using 
hippocampal neurons and animal models revealed that 
UCB induces the deposition of the amyloid-β (Aβ) peptide 
and tau hyperphosphorylation, establishing a link between 
an early exposure to bilirubin and Alzheimer’s disease (AD) 
features in later life (95), thus reinforcing its long-term 
effects. In a later study, high UCB levels, together with 
decreased serum concentrations of albumin, were found in 
dementia patients with Aβ and intravenous administration 
of albumin produced beneficial effects on daily function and 
dementia severity in AD patients (96).

In conclusion, neonatal-associated UCB and BIND may 
contribute to auditory and motor deficits (97), but also be 
associated with developmental delay, cognitive impairment, 
behavioral problems as well as poor executive function, and 
psychiatric disorders (98,99).

Free and erythrocyte-bound bilirubin

Bf was first designated as the fraction of bilirubin that was 
not conjugated and bound to albumin, distinct from the 
conjugated species. This concept was introduced in 1958 
with an Italian publication (100), followed by a French  
one (101) (and many others) until 1969 to 1972, when the 
low concentration of the non-protein-bound bilirubin 
species started to be estimated and was determined to 
be around 10−10 or 10−9 mol/L (102,103). The authors, at 
that time, designated this fraction as Bf or unbound and 
suggested that it could increase under some conditions 
to 10−6 or 10−5 mol/L. First determinations used the 
Sephadex G-25 elution technique for the separation 
of Bf and albumin-bound bil irubin (104,105) and 
the enzymatic oxidation with hydrogen peroxide and 
horseradish peroxidase (106). The former method was 
even commercialized and recognized as a valuable aid to 
neonatologists in preventing bilirubin encephalopathy 
(107,108). Then, when the two processes were compared, 
the peroxidase method was found to require less volume 
of serum and to be more sensitive for the assessment of Bf 

concentration (109). All these studies were fundamental 
to finally separate two species of UCB, the one bound to 
albumin and the free species, which is the most toxic fraction 
(15,110,111). Determination of Bf and the estimation of 
reserve albumin binding capacity was then complemented 
by the erythrocyte-bound bilirubin (29,112). All these 
methods were thereafter reviewed (113). Now, some studies 
have assessed the modifications caused by the binding of 
bilirubin to erythrocytes, either for morphological changes 
or induced hemolysis, and consequences that it could 
have in aggravating the risk of BIND (Figure 1) (30,114). 
Another important contribution to the relevance of the 
toxic levels of Bf was the understanding about the bilirubin 
displacement from albumin by competitive binding of 
endogenous compounds and several drugs that promoted an 
increase of its levels (106,115-118).

Neurocentric view of BIND

The notion that UCB reaches the brain by crossing the 
BBB was probably concluded from studies performed in 
the mid-1960s using various animal models of experimental 
bilirubin encephalopathy (119). Such studies also suggested 
that neurologic damage was related to UCB concentration 
in the brain. Furthermore, UCB seemed not to be a passive 
player in BBB dynamic properties, but it possibly could 
trigger several damaging mechanisms that impair the barrier 
function at the level of brain microvascular endothelial  
cells (120) in a time-dependent manner (121). These 
effects were observed both in vitro and in post-mortem brain 
sections of infants with kernicterus (122).

Once in the brain, UCB interacts with neurons and may 
cause irreversible damage. Initial studies in experimental 
kernicterus already proposed that UCB diffuses through 
the neuroplasm, interacting with the Golgi complex, 
neurotubules, and endoplasmic reticulum (ER) of 
neurons, diffusing into the axoplasm and causing axonal  
destruction (123). Another long-recognized target for UCB is 
the mitochondria, where UCB damages respiration, uncouples 
oxidative phosphorylation, and induces brain mitochondrial 
swelling, even at low micromolar concentrations (124,125). 
We found that UCB also impairs the mechanisms associated 
with mitochondrial fusion-fission dynamics as depicted in 
Figure 3 (unpublished data), which are associated with the 
maintenance of cellular quality (126). Elevated mitochondrial 
fusion, here assessed by mitofusin 2 protein immunostaining, 
favors the generation of interconnected mitochondria to 
increase cell bioenergetics efficiency when facing an insult 
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as a cell survival mechanism (127). In contrast, fission that 
we determined through the expression of the mitochondrial 
fission 1 protein (FIS1) is associated with numerous 
mitochondrial fragments and its decrease may lead to reduced 
mitochondria motility (128). UCB also triggers mitochondrial 
membrane permeabilization, with the release of cytochrome c, 
and activation of caspases 3 and 9, that culminate in neuronal 
apoptosis as described previously (129,130) and us as well (131).

Although the exact toxic mechanisms are still not clear, it 
is becoming apparent that UCB impairs neuronal cells by a 
plethora of effects that eventually culminate in cell death by 
necrosis- and apoptosis-like mechanisms (132,133), which 
may involve glutamate excitotoxicity (134). In fact, several 
reviews describe multiple neurotoxic mechanisms for UCB, 
like inhibition of neurite outgrowth and ramification (135), 
alteration of neuronal membrane microfluidity, impairment 
of axonal arborization, and increased nitrosative stress (136) 
that, together with glutamate, seem to mediate arborization 
impairment (137) and to alter synaptic transmission (138). 
Not surprisingly, immature cells appear to be more sensitive 
to UCB neurotoxicity (139,140), correlating with the 
proposed age-related window of susceptibility to UCB 
neurological damage (141). It is important to note that most 
of these results were obtained in experimental conditions 
that mimic the true pathophysiological conditions, i.e., 

with clinically relevant molar ratios of UCB compared 
with human serum albumin (HSA), avoiding excessive 
aggregation and precipitation (142).

Studies using live calcium imaging reinforce the role of 
ER stress in UCB neurotoxicity to hippocampal neurons 
previously described as one of the most UCB-susceptible 
neuronal subpopulations (143,144), with a disruption of 
calcium homeostasis in neuronal cells, but not in astrocytes. 
This agrees with the previous report of Qaisiya et al. showing 
the involvement of ER stress in neuroinflammation and 
apoptosis in the SH-SY5Y differentiated neuronal cells (145). 
Interestingly, a similar mechanism involving ER stress and 
calpain (an intracellular Ca2+-dependent cysteine protease) 
was shown to interfere with oligodendrocyte maturation by 
UCB-induced demise of oligodendrocyte precursor cells 
(Figure 4) (146), impacting axonal myelination (147) and thus, 
potentially disturbing axonal conduction and, consequently, 
neuronal communication.

Other novel findings highlight the potential of UCB to 
disrupt neuronal communication, such as the inhibition 
of lipid raft-dependent functions at the specific level of 
the nerve cell adhesion molecule 1 (L1) that is involved in 
neuronal signaling (148). Using patch-clamp techniques, 
Shi et al. found that UCB increased the spontaneous firing 
rates of neonatal neurons in brainstem slices in a calcium-

Figure 3 Alterations in the mitochondrial mechanisms of fusion-fission dynamics induced by unconjugated bilirubin (UCB) in rat cortical 
neurons. Neurons were incubated for 4 h at 37 ℃ with UCB at 50 μM plus 100-μM human serum albumin (HSA), and data compared 
with controls (cells with albumin, but no UCB added). Bars represent the mean fluorescence values (± SEM) from at least four different 
microphotographs and normalized by the number of cells in each photograph for fission 1 protein (FIS1) and mitofusin 2 protein (MFN2).  
*, P<0.05 vs. control (C). Unpublished data obtained by RFM Silva at the D Brites laboratory.
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dependent manner, upregulating the voltage-gated sodium 
channels by promoting their recruitment to the neuronal 
membrane (149). Furthermore, Albanna et al. showed that 
moderate UCB levels were able to modify the function 
of voltage gated Cav2.3 calcium channels, impairing 
neurotransmission in retinal neurons (150). Moreover, 
using a mouse model of neonatal hyperbilirubinemia, it was 
observed that UCB-induced oxidative stress may damage 
cerebellar DNA (151), which may then contribute to 
neuronal cell death.

Finally, a link between maternal micronutrients, the 
nutritional status of the newborn (152) and the deficient 
enzymatic antioxidant defenses implicated in neuronal 
damage by UCB (153), may additionally constitute targets 
for therapeutic interventions in the management of BIND, 
by potentially exerting protective and regenerative effects.

Gliocentric view of BIND

Besides neurons, it is now recognized that glial cells are 
relevant players in most neurodegenerative diseases, 
contributing to the initiation and/or propagation of 
neuropathological cascades, either by gain or loss of 
function (154). Actually, glial cells, once considered as 
the glue between neurons, are presently acknowledged as 
key players in the brain immune system and in multiple 
physiological processes linked to synaptic plasticity, 
energy metabolism, learning and memory formation, 
among others (155). The intricate balance of homeostatic 
and inflammatory functions influences the onset and the 
progression of neurodegenerative diseases (156). Moreover, 
neurological disorders usually involve feedback loops 

that disseminate and perpetuate the disease (157), mostly 
mediated by the cell-secreted soluble factors and release of 
small (exosomes) and large EVs (158,159), already observed 
in the cerebrospinal fluid (CSF) of patients with ABE (160). 
We propose that neuronal selectivity in BIND converges 
with non-cell autonomous mechanisms involving signaling 
mechanisms and non-neuronal cell types, thus requiring a 
better understanding. In this section, we will address data on 
glial sensitivity to UCB, i.e., the view of a more integrated 
“gliocentric brain” (161), providing further information on 
targets to unravel and prevent UCB brain lesions and their 
sequela, and then assist in the insult recovery.

Myelin damage

The myelinating cells of the CNS, the oligodendrocytes, 
are generated from bipolar oligodendrocyte progenitor cells 
(OPCs) that arise between 10 and 18 weeks of gestation 
in humans (162,163). Maturation of oligodendrocytes 
start at 28 to 40 weeks of gestation and proceeds during 
the early postnatal period (141). Oligodendrocytes 
constitute 5% to 8% of total glial cells (163). The first 
report on ultrastructural changes in the Gunn rat with 
bilirubin encephalopathy identified the presence of 
myelin debris in the cytoplasm of neurons, which also 
presented mitochondrial alterations and glycogen-filled  
vacuoles (164). UCB was shown to bind to myelin and 
was suggested to be associated with its retention in the 
brain (165,166). However, UCB also caused cerebellar 
myelin fragmentation in in vitro cultures (167), and myelin 
loss was observed in biopsy samples from a kernicteric 
preterm infant (168). Lesions in the myelin sheath of 

Figure 4 Unconjugated bilirubin (UCB) is harmful to oligodendrocyte progenitor cells (OPCs). Isolated OPCs were incubated for 8 h 
at 37 ℃ in the absence (healthy) or in the presence of UCB at 50 μM plus 100-μM human serum albumin (HSA) (injured). Cells were 
immunolabelled with specific antibodies, A2B5 for OPCs and O4 that stains the transition from OPCs to differentiated oligodendrocytes. 
Representative pictures are shown. Magnification: 630×. Unpublished data obtained by A Barateiro at the D Brites laboratory.

Healthy OPCs UCB-injured OPCs

A2B5 + O4 A2B5 + O4
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spiral ganglion cells were observed in neonatal guinea pigs 
exposed to hyperbilirubinemia. Neuroimaging studies 
in infants at risk for kernicterus identified white matter  
abnormalities (169). When assessed for in vitro effects, 
UCB was shown to impair OPCs (Figure 4) (146) and 
oligodendrocytes (170), as well as to disturb the differentiation 
of OPCs into myelinating oligodendrocytes (147). Further 
studies, using rat organotypic cerebellar slices demonstrated 
that treatment with 20-nM Bf led to a reduction in 
the number of myelinated fibers, together with the 
gene expression of the myelin basic protein (171). The 
data validate that concentrations mimicking neonatal 
unconjugated hyperbilirubinemia impair myelination. Using 
a new kernicterus mouse model with Ugt1a1 gene deletion, 
it was possible to confirm the presence of cerebellum 
atrophy by the elevated UCB concentrations, together with 
axonal loss and decreased myelination, which was similarly 
noticed in the medulla oblongata and pons, but not in the 
corpus callosum (172). In summary, deficits in myelination 
should be considered as targets when developing new 
therapeutic strategies for BIND.

Microglia polarization

Microglia are the resident macrophages of the CNS 
that are derived from the yolk sac and travel to the brain 
during early development (173). Microglia represent 5% 
of total glial cells in the human cortical brain (174) and 
show phenotypical heterogeneity, regional diversity, and 
are highly complex and dynamic and with interchangeable 
phenotypes (175) (Figure 5). Microglia release interleukin 
(IL)-1β  and tumor necrosis factor-alpha (TNF-α), 
among other cytokines (176), which regulate homeostasis 
or are involved in neuroinflammation and pathology. 
Besides phagocytic and pruning functions, microglia  
regulate myelin uptake, neurogenesis, and cerebral 
angiogenesis (175). The first data on possible lipid droplet-
accumulating microglia were obtained in the Gunn rat 
cerebellum in 1986 (177), a model of CN1. In conditions 
leading to HO-1 induction, producing biliverdin from 
heme (Figure 1), this enzyme was found to be mainly 
localized in microglia and involved in their activation, 
but it is unclear whether this might lead to beneficial or 
harmful effects (178-180). A pioneer study showed that 
UCB activates microglia leading to the release of the pro-
inflammatory cytokines TNF-α, IL-1β, and IL-6, as well 
as glutamate, while also inducing cell death by apoptosis 
and necrosis (181), suggesting that these cells may have an 

important role in BIND and, consequently, are promising 
targets to modulate excessive neuroinflammation. Certain 
UCB photoproducts also produce neuro-inflammatory 
effects that may even surpass those of 140-nM Bf (182). 
Therefore, it is not surprising that microglia are activated 
after intracerebral hemorrhage and can be associated 
with bilirubin production in the CNS and its oxidation 
products (183), while also facilitating early inflammation by 
neutrophil brain infiltration (184).

Interaction of UCB with microglia first impacts on 
protective mechanisms associated with the activation 
of mitogen-activated protein kinases (MAPKs) and 
nuclear factor kappa B (NF-κB), together with increased 
phagocytosis, and later release of pro-inflammatory 
cytokines (185). In early responses to UCB, microglia may 
then have a protective intervention (185,186). However, in 
chronic or long-lasting hyperbilirubinemia, such benefits 
may no longer be supported (187-189). Therefore, the good 
may turn bad with the release of excessive inflammatory 
mediators. Actually, microglia are known by their dual 
neuroprotective and neuroinflammatory roles among the 
kaleidoscope of polarized phenotypes (190) (Figure 5). In 
the steady-state, microglia have a ramified morphology 
with highly motile processes constantly surveying the 
neighboring environment. Changes in brain homeostasis 
leads to alterations in microglia shape and process motility. 
The acquired amoeboid morphology is associated with 
phagocytic ability and mild inflammation, the rod-
shape with activation by mild neurodegeneration, and 
the hypertrophic with excessive immune reaction. When 
damaged by chronic insults or senescence, microglia 
become dystrophic and are ineffective in supporting neural 
cell homeostasis (191-199). Using transcriptional single-cell 
sorting, it was possible to identify several immune-related 
classes and disease-associated microglia (DAM) phenotypes, 
based on a specific set of genes found in AD models and 
patients (200-202).

Activation of microglia was observed in the hippocampus 
and cerebel lum of  mice with hyperbi l irubinemia 
(172,203,204) and in rat cerebellar slice cultures treated 
with UCB (171), where the induction of excitotoxic and 
neurodegenerative processes were identified. However, 
we still need to better understand microglial population 
diversity, in which each member may perform unique 
functions in a disease-context-dependent fashion (205). 
As already mentioned, senescent microglia associated with 
aging and AD (192,206,207) show loss of function and 
chronic release of pro-inflammatory mediators. Caldeira 
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et al. developed an in vitro microglia model able to mimic 
“young/responsive” and “old/senescent” microglial  
features (194). These authors using in vitro aging microglia 
were able to discriminate age-dependent responses by  
Aβ (195). When such a model was used to assess Bf-
induced responses in each of the conditions, increased 
sickness prevailed in the younger microglia, as compared 
with the older cells (208), and included enhanced amoeboid 
morphology, NO release, and elevated high mobility group 
box protein 1 (HMGB1), TNF-α, and IL-6 gene expression 
levels. Among the vast number of small non-coding 
short RNAs (miRNAs) controlling post-transcriptional 

expression of target genes, some were recognized as 
inflammatory associated miRNAs (inflamma-miRNAs), 
and were accepted as key players in microglia function/
dysfunction, polarization, and restoration (209). Among 
those, upregulation of miRNA(miR)-155, miR-125b, miR-
21, and miR-146a by Bf was only observed in the “young” 
microglia, pushing the cell phenotype to an immune-
polarized state, and indicating their propensity to be 
stimulated by Bf. However, Bf seemed to also induce a sort 
of microglia activation, independent of the age of the cells, 
based on an induced increased of CD11b staining (associated 
with a proinflammatory status) and on the elevation of 

Figure 5 Simplified microglial phenotypic categorization in homeostatic and in inflammatory conditions, accordingly to intensity, type, 
and duration of unconjugated bilirubin (UCB) and/or free bilirubin (Bf) treatment. Homeostatic microglia are known for their immune 
surveillance and regulation of neural cell networks, with a ramified morphology and motile processes. The bipolarized or rod-shaped 
microglia are highly proliferative, express both pro- and anti-inflammatory markers, and are associated to mild neurodegeneration and 
repair. Phagocytic and activated microglia reveal an amoeboid shape with retracted processes. Hypertrophic and “bushy” microglia have 
short and poorly ramified processes and are associated with cell activation/overactivation. While early microglia activation is important to 
restore brain homeostasis, if chronically activated, they continuously release pro-inflammatory molecules that further increase tissue damage. 
Dystrophic microglia relate to a less responsive or ineffective supportive cell showing loss of processes, cytoplasmic fragmentation, and 
spheroid morphology. Evidence demonstrated that microglia may co-exist in different phenotypes (reparative, inflammatory, and senescent-
like). Diverse activation stages occur after the transition from the steady state into a disease-associated microglia (DAM) population. 
Transcriptional signatures may vary in a context-dependent fashion and in the case of UCB/Bf stimulation, with the brain region, jaundice 
severity, and presence of co-morbidities.

MICROGLIA SUBPOPULATIONS
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inducible nitric oxide synthase (iNOS) gene expression at 
a 100-nM concentration. On the contrary, cells behaved 
differently with early apoptosis exclusively noticed in 
“younger” microglia, and late apoptosis/necrosis only in 
“older” cells. Data have shown that microglia reveal age-
dependent performance when stimulated by bilirubin, with 
beneficial and pathological properties that may vary with 
co-morbidities, CNS region, neurodevelopmental stage, 
cell maturation, jaundice duration, and hyperbilirubinemia 
intensity.

Astrocyte aberrancies

Astrocytes comprise nearly 35% of the total CNS 
population, and like microglia, they may be found in all 
CNS regions. Astrocytes participate in neuroinflammatory 
responses and show diverse subtypes that are disorder- 
and context-specific (210,211). Some of the biomarkers 
more often used in their characterization are glial fibrillary 
acidic protein (GFAP), S100B, glutamine synthetase, or 
the glutamate transporters, GLT1 and GLAST (210,212). 
One of the first studies using mixed fetal rat glial cells, 
in which 80% to 95% of cells were astrocytes, identified 
morphological and cytotoxic alterations, as well as age-in-
culture-dependent sensitivity, when working with UCB/HSA 
ratios of 2, i.e., recapitulating severe hyperbilirubinemia in 
neonates (213). The study called attention for the higher 
susceptibility of immature neural cells to UCB harmful 
effects. The idea was later reinforced by several studies in 
primary cultures of astrocytes, as well as in neurons and 
microglia (46,47,140,208,214,215). By using the MTT assay 
for cell viability and mitochondrial activity assessments, 
Chuniaud et al. attributed the cytotoxicity of UCB to 
mitochondria failure (216). Astrocytes have a wide range of 
relevant functions in the brain that contribute to maintain 
extracellular homeostasis (217), such as their ability to uptake 
glutamate, thus preventing its accumulation at synapses 
and resulting excitotoxicity (218). UCB inhibited glutamate 
uptake and cell endocytosis, when rat cortical astrocytes 
were used (219,220). Interestingly, while the inhibition of 
glutamate was higher in astrocytes than in neurons, cell 
death and changes in redox stress were prominent in neurons 
(133,221), suggesting cell pathological susceptibilities. 
Astrocyte increased resistance may derive from the elevated 
expression of the multidrug resistance-associated protein 1 
(MRP1) that was shown to be promoted by UCB (222).

Astrocytes detect infection and injury by neurons, 
microglia, oligodendrocytes, and endothelial cells, with 

the secretion of cytokines and growth factors that may 
act as immune regulators, following the activation of 
NF-κB. They are accepted as initiators and responders 
to inflammation, namely to mediators released by the 
activated microglia, such as IL-1β, TNF-α, and interferon 
gamma (IFN-γ), and they react to lipopolysaccharide (LPS)  
(223-226) .  Interes t ingly,  UCB at  50-µM (UCB/
HSA=0.5) caused apoptotic cell death and TNF-α secretion 
from rat cortical astrocytes, in a similar way to that of  
10 ng/mL of LPS. They reacted strongly to UCB, then to LPS, 
in terms of necrosis, as well as to the secretion of IL-1β and 
glutamate, and less to the release of IL-6 (227). The cytotoxicity 
of UCB in astrocytes was also observed with serum from infants 
with unconjugated hyperbilirubinemia (228). As expected, 
UCB activated astrocyte signaling pathways associated with 
MAPKs, i.e., p38, Jun N-terminal kinase (JNK)1⁄2 and 
extracellular signal-regulated kinase (ERK)1⁄2 pathways, as 
well as the key player NF-κB (229), which further increased 
in hypoxia and oxygen-glucose deprivation preconditioning 
conditions (48). Translocation of NF-κB from the cytoplasm 
to the nucleus in the cortical astrocytes treated with UCB 
at 50 µM plus 100-µM HSA was shown to peak at 2 to 4 h 
of interaction (230) (Figure 6), much later than in microglia, 
where the peak was observed 30 min after exposure (185), 
evidencing the early activation of microglia by UCB. We 
also noticed an induced release of IL-1β and TNF-α from 
UCB-treated cortical astrocytes with increased expression 
of the TNF-α receptor (TNFR)1 and IL-1β receptor  
(IL-1R)1 (231). Moreover, UCB reduced the cytokine 
pro-forms while activated their converting enzymes, ICE 
and TACE, respectively (231,232). ICE or caspase-1 
activation that leads to pyroptotic cell death (233), 
pro-inflammatory processes (234), and inflammasome 
activation, including the regulator of innate immunity 
NLR family pyrin domain containing 3 (NLRP3) (235), 
was demonstrated in cultured rat cortical astrocytes after 
exposure to UCB (236). Astrocytes, acquire phenotypic 
aberrancies in neurodegenerative diseases and are activated 
by neuroinflammation and stressful factors, such as UCB, 
contributing to pathophysiological paracrine signaling 
events, mainly mediated by EVs containing miRNAs 
(237-240). In such a way, dysfunctional astrocytes actively 
contribute to cell homeostatic imbalance in the brain, as 
will be further explained in the next section.

Dysregulated neuron-glia interplay: the gearbox?

Brain function depends on coordinated interactions and 
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intercellular signals between neurons and glial cells that 
sustain cell homeostatic balance (241,242). In disease, 
secretion of pathological signaling molecules and EVs 
from donor cells determine autocrine and paracrine 
signaling dysregulation (243,244). Changes in neuro-
immune homeostasis and neuroinflammation may start at 
the neurovascular unit composed by the BBB elements: 
(I) on one side, the endothelial cells, pericytes, and the 
astrocyte end foots; and (II) on the other side the glial 
cells, neurons, and the extracellular matrix. Disruption 
of BBB by UCB is well documented (120,245-247) and 
facilitate the entrance of elevated Bf levels into the brain, 
its interaction with neuronal cells and the emergence of 
BIND (Figure 1). Disruption of the BBB by bilirubin and 
hypercarbia/hyperosmolarity (52,248) may also allow the 
passage of albumin-bound bilirubin (249), though the 
permeability is higher for the Bf species (250). Within 
the brain, the binding of Bf to cells is facilitated by  
acidosis (251), increasing the risk of BIND. Pathological 
synapse loss and dysfunction depends on the maturation of 
neuronal circuits, proper function of glial cells, and synaptic 
refinement (252). By using co-culture systems of dorsal 
root ganglia neurons from rat embryos with OPCs, it was 
possible to establish that UCB toxicity on pre-myelinating 

oligodendrocytes interferes with their maturation and 
leads to incomplete myelination (147). Considering that 
oligodendrocytes modulate synaptic transmission through 
the release of brain-derived neurotrophic factor (BDNF) 
in the developing brain (253), the delay caused by bilirubin 
in the maturation of OPCs may then be critical to brain 
development and BIND disorder.

The concerted activity of neuron-astrocyte communication 
by neuromodulators, neurotransmitters, glutamate, and 
calcium (254) is determinant in neurodevelopment and 
associated diseases (255). It may differ by brain region 
and with stimulus duration, as observed after injection of 
bilirubin into the brain (256). Protective astrocyte pathways 
involve the release of neurotrophic factors, neuropoietic 
cytokines and a plethora of protective mediators (257), 
which modulate the propensity of the cells to injury. 
This was what we observed when the addition of 50-μM 
UCB plus 100-μM HSA to neuron-astrocyte cocultures 
did not produce immediate neurotoxic effects (258). Cell 
recognition triggers pro-survival effects that should have 
protected cells from UCB injury. Instead, when neuron-
astrocyte homeostasis was established for 24 h prior to the 
addition of the same UCB/HSA molar ratio, then increased 
neuronal cell death (apoptosis and necrosis), reduced 

Figure 6 Unconjugated bilirubin (UCB) induces the translocation of nuclear factor kappa B (NF-κB) from the cytoplasm to the nucleus of 
cortical astrocytes. Astrocytes were incubated for 1, 2, and 4 h at 37 ℃ with UCB at 50 μM plus 100-μM human serum albumin (HSA), and 
data compared with controls (cells with no UCB added, time =0 h). (A) Representative images of NF-κB immunoreactivity using an anti-
NF-κB primary antibody. Magnification: ×400. (B) Bars represent the NF-κB-fold change values (±SD) from at least three independent 
experiments. (C) Cytosolic and nuclear protein extracts were processed for Slot blot analysis of p65 NF-kB expression. *, P<0.05 vs. controls 
at time point 0 h; #, P<0.05 vs. cytosolic extracts. Unpublished data obtained by A Fernandes at the D Brites laboratory.
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neurite extension and ramification, together with S100B 
and nitric oxide (NO) release, were then revealed (259).

Microglia  also modulate CNS homeostasis  by: 
(I) releasing BDNF (that controls neuronal network 
excitability) (260), secretome functional signaling associated 
factors and EVs; and (II) bidirectional communication 
that involves CD200 and fractalkine (CX3CL1) in 
neurons and the target receptors CD200R and CX3CR1 
in microglia (261) (Figure 7). During neuroinflammation 
by damage-associated molecular patterns (DAMPs), 
pathogen-associated molecular patterns (PAMPs) and 
ATP, microglia release pro-inflammatory cytokines 
(e.g., IL-6, TNF-α, IL-1β), inflamma-miRNAs, reactive 
oxygen species (ROS) and NO, which may either 
account to injury repair (262), or to neurodegeneration 
if excessive (263-265). In such dysregulated homeostasis, 
increased extracellular neurotoxins, such as HMGB1 and 
glutamate, further contribute to neuronal dysfunction and 
microglia overactivation (266). In contrast, reparative/
restorative microglia from the integration of pro- and anti-

inflammatory mediators, expressing IL-10 and arginase 
(267,268), intervenes in balancing health and disease. Thus, 
good or bad cellular environmental conditions may affect 
the cell response to the UCB stimulus. Indeed, astrocytes 
may either reduce microglia inflammatory reaction (269), or 
become more reactive when receiving specific inflammatory 
mediators from the activated microglia (224), aggravating 
neuroinflammation, and neurodegeneration. Secretome 
from UCB-treated astrocytes or neurons, added to UCB-
treated microglia modulated IL-1β secretion and enhanced 
phagocytosis (269), highlighting the benefits of homeostatic 
cell drivers over the UCB immediate microglia cytotoxicity. 
Thus, cells establish a very strong communication until 
attaining homeostasis; but also, their crosstalk after UCB 
insult may act in a synergistic way to cause a neurotoxic 
environment. In hippocampal organotypic cultures from 
Wistar rats at 2 and 8 PN days, harmful effects at PN8 were 
higher than at PN2 after treatment with 140-nM Bf (144), 
as well as after 14 days in culture relatively to that observed 
after only 7 days (270). However, we cannot dismiss the 

Figure 7 Neuron-microglia interactions in bilirubin-induced neurological damage (BIND) associated to neuroinflammation and 
neurodegeneration. Microglia-neuronal signaling involves several secretome-associated mediators, including cytokines, chemokines, growth 
factors, and extracellular vesicles (EVs), among others, that sustain cell homeostasis. Stimulation of neuroinflammation by injury, as that 
caused by unconjugated bilirubin (UCB)/free bilirubin (Bf) and by infection, leads to neuronal degeneration and microglial activation, 
which may then switch to reparative microglia or be overactivated. DAMPs, damage-associated molecular patterns; HMGB1, high mobility 
group box protein 1; IL, interleukin; NO, nitric oxide; PAMPS, pathogen-associated molecular patterns; TNF, tumor necrosis factor; ROS, 
reactive oxygen species.
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fact that cells may become more susceptible with time in 
culture. When the effects of microglia in the hippocampus 
response to UCB was assessed by using microglia-depleted 
and non-depleted organotypic cultures (PN7-10 plus 72-h 
slice functional recovery), release of glutamate and NO, as 
well as cell demise, were higher in the presence of microglia 
after treatment with 50-µM UCB (at a UCB/HSA =0.5), 
indicating the joint action of neurons and glial cells in 
overall nerve cell toxicity surplus (137).

Lately, EVs were shown to be key players in cell-to-
cell signaling (209,242,271). These vesicles, besides lipids, 
proteins, and genetic material, include miRNAs (243) and 
may release their contents into the extracellular space or 
into a neighboring cell after fusion or uptake (271), thus 
sustaining homeostasis or propagating the disease. The 
small EVs/exosomes produced by neural cells easily cross 
the BBB and allow reciprocal communication between 
the CNS and the peripheral circulation, being considered 
promising biomarkers (272). Profiling of exosomal proteins 
or miRNAs in serum and CSF showed promise as relevant 
markers in several brain disorders (273-276). In a recent 
study, quantitative proteomic characterization of EVs from 
the CSF of infants with ABE identified the involvement 
of four proteins associated to immune-inflammation and 
signaling pathways (160).

In conclusion, neurons and glial  cells establish 
concerted actions that preserve brain function from 
injury, but also work in a synergistic fashion when the 
cell homeostatic balance is severely damaged, accounting 
for the time-dependent aggravating effects of a sustained 
hyperbilirubinemia. EVs are important players in 
supporting health or in contributing to disease, and may 
turn out to be important tools to identify infants at risk of 
BIND.

Perspectives

Bilirubin encephalopathy and associated KSD have been 
neglected conditions with limited funding and unsatisfactory 
health interventions due to insufficient knowledge of the 
underlying pathological mechanisms. Current available 
treatment options and potential therapies were recently 
reviewed (18). Some of the tested interventions include 
ursodeoxycholic acid (UDCA) or its glycoconjugate 
(GUDCA) (129,130,139,232,247,277-279), minocycline 
(280,281), bioactive compounds (282-284), and small-
molecule activators (285,286).

Though a few of the strategies were assessed for efficacy 

in clinical trials (278,279), most were tested in pre-clinical 
models, from cell cultures to organotypic systems and 
animal models. Translation of such data to the clinic is 
a critical challenge that frequently disappoints due to 
biological discrepancies and different response mechanisms 
to perturbations among species (287). Reprogramming 
of dysfunctional neural cells toward pro-regenerative 
functions, as suggested for microglia (288), may also 
provide new therapeutic opportunities to prevent excessive 
UCB-induced neuroinflammation and neurodegeneration. 
However, strategies able to produce cell revival with 
modulatory medicines, such as the incorporation of 
medicines in exosomes, miRNA-based therapies, or cell 
replacement strategies are innovative approaches that 
are yet far from being developed or tested in the field of 
hyperbilirubinemia. The use of fibroblasts from jaundiced 
infants that can be differentiated into neural cells according 
to brain regions by reprogramming techniques (induced 
pluripotent stem cells or iPSCs), or by direct conversion, 
may also bring new opportunities. These advanced 
models will be important tools for drug testing, or use in 
regenerative strategies (e.g., autologous transplantation). 
Of note, induced hepatocytes from iPSCs transplanted into 
Gunn rats produced a decline of 30% to 60% of UCB and 
biliary excretion of bilirubin glucuronides, ameliorating 
hyperbilirubinemia and showing promise in the treatment 
of unconjugated inherited liver diseases (289), namely in 
CN1.

Given the complexity and the multiple factors 
associated to the risk of BIND or KSD in severe neonatal 
hyperbilirubinemia, combination of therapeutic strategies 
might be considered. Circulating exosomes may not only 
then be used as noninvasive novel biomarkers to help in 
the clinic, but also for personalized medicine. Engineered 
exosomes (290), biomimetic exosomes (291), and miRNA-
enriched EVs (292), could also contribute to a better cell 
survival and revival, when used together with the traditional 
therapeutic interventions, hopefully facilitating neuro-
regeneration in infants with bilirubin-associated brain 
injury.
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