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Background and Objective: The provision of nutrition therapy is an integral component of care 
for the critically ill child. Essential factors to consider include the child’s evolving metabolic needs, age, 
underlying disease, co-morbidities and severity of illness. The stress response has a significant impact on 
energy requirements and protein utilization during critical illness. To ameliorate the impact of the stress 
response, nutrition therapy is a crucial aspect of care. Scientific support for early enteral nutrition is strong, 
yet application in clinical practice remains challenging. The aim of this narrative review is to discuss 
the physiology of metabolic derangements that occur during critical illness, outline optimal nutrition 
prescription, and discuss benefits of early enteral nutrition. Considerations of special populations, such as the 
surgical patient, and the patient requiring vasoactive medications will also be discussed.
Methods: The authors reviewed literature pertinent to the topic area, with incorporation of their collective 
expert opinion on topics related to nutrition in critically ill children. A structured appraisal of the literature 
was not conducted.
Key Content and Findings: Enteral feeds should be initiated as soon as safely possible with advancement 
in a careful stepwise manner. The post-operative surgical patient presents unique challenges to nutrition 
therapy.  Enteral nutrition for children requiring vasoactive medications can be safe, well-tolerated and 
beneficial.
Conclusions: Despite the heterogeneity of age, diagnosis, overall presentation at time of illness onset 
and interventions in the PICU setting, evidence suggests that enteral nutrition is associated with improved 
clinical outcomes, decreased length of hospitalization and decreased mortality in critically ill children. 
Strategies to optimize enteral feeding in critically ill children must consider the severity of illness, the child’s 
nutritional status, include determination of energy and protein needs and have clear criteria for monitoring 
feeding tolerance with the child’s changing clinical status. Future inquiry must explore the impact of enteral 
nutrition in various phases of pediatric critical illness and determine optimal approaches to assessment, 
prescription, delivery and evaluation of feeding tolerance in this population. 
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Introduction

Enteral nutrition (EN) is the preferred method of providing 
nutrition therapy in critically ill children with a functional 
gastrointestinal (GI) tract. EN has been shown to be safe, 
well-tolerated and associated with improved outcomes. 
Literature has associated decreased hospital acquired 
infections, increased ventilator-free days, decreased length 
of stay, and decreased mortality with EN during critical 
illness (1-4). Despite this evidence, challenges related to 
optimal provision of nutrition therapy in this population 
remain. Current guidelines recommend early enteral 
nutrition (EEN) as a core component of best practices 
for care delivery (1,5-8). While these recommendations 
emphasize the benefit(s) of EN in critically ill children, 
questions persist regarding timing, route, and rate of enteral 
feeding as well as determining acceptable targets for feed 
volume, energy and protein intake. 

The goal of nutrition therapy during critical illness 
is to meet the patient’s basal metabolic needs, support 
the body in response to stress and illness, and prevent 
the ongoing loss of lean body mass (4,9,10). The aim of 
this review is to discuss the metabolic derangements that 
occur during critical illness, the benefits of EEN and the 
practical strategies to optimize nutrition in critically ill 

children. 

Methods

Collaboratively, the authors reviewed literature pertinent to 
the topic of interest and combined this with their collective 
expert opinion on nutrition therapy in pediatric critical 
illness to develop this summation in a narrative review 
format. A structured appraisal using scoping, systematic, 
or meta-analysis review methodology was not employed to 
construct this review. 

Determining nutritional needs in critically ill 
children

Nutrition therapy during critical illness is expected to offset 
the burden of the metabolic stress response and prevent loss 
of lean mass to improve clinical outcomes. This includes 
prudent prescription of nutrients individualized to the 
patient and the phase of illness, and provide nutrients in 
an efficient and safe manner (Figure 1). There have been 
several key advances to improve understanding of energy 
and protein requirements. However, the amount that is 
most associated with improved clinical outcomes is not yet 
determined. Hence, there remains significant uncertainty 

Figure 1 Goals of nutrition therapy. Meeting metabolic needs, will offset the stress response and avert loss of lean mass and fat, improving 
outcomes from critical illness. Legend: EN, enteral nutrition; PN, parenteral nutrition.
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in the best approach to prescribing energy and protein, 
especially during the early phase of pediatric critical illness. 

Energy requirement in critical illness 

Significant improvements in surgical, anesthetic and 
intensive care therapies may be responsible for a more 
subdued metabolic state in critically ill patients (11,12). 
This includes enhanced sedation and analgesic therapies, 
improved patient respiratory ventilator synchrony, and 
advancements in bedside care. Studies that examine resting 
energy expenditure (REE) demonstrate an unpredictable 
energy requirement in the heterogeneous pediatric intensive 
care unit (PICU) population (13). Energy requirements 
evolve and may vary widely over the course of critical illness. 

Recommended as a precise measure of REE in critically 
ill children, indirect calorimetry (IC) should be used 
whenever possible to guide energy prescription (14). 
However, IC is not available at all centers, it requires 
significant resources and expertise, and may not be feasible 
in some patients during the acute phase of critical illness 
(14,15). In the absence of measured REE by IC, standard 
prediction equations such as the Schofield (16) and World 
Health Organization (WHO) (17) are recommended 
to estimate REE (1,6). Developed from measurements 
in healthy children these equations should be used with 
caution owing to the unpredictable nature of critical illness 
and the metabolic alterations that occur. 

Driven by a complex neuroendocrine cascade, the stress 
response incited during critical illness imposes a varied 
energy burden characterized by alterations in carbohydrate, 
lipid, and protein metabolism (11). Predictive equations 
cannot account for the dynamic nature of these alterations 
and therefore risk under or overpredicting energy 
requirements in critically ill children (12,18). Attempts 
to develop a predictive equation specifically for use with 
mechanically ventilated children have met with inaccuracies 
and are not recommened (18). Additionally, the practice 
of adding disease, condition or activity-based stress factors 
to REE (estimated or measured) is also not recommended 
when estimating energy needs in critically ill children (1,6). 
Overall, it is prudent to be mindful of the risk of unintended 
over or underestimation of energy requirements due to 
reliance on inaccurate equations to estimate REE in the 
PICU population.

The optimal amount of energy necessary to improve 
clinical outcomes is unknown (15,16). No current trials 
demonstrate the benefits of matching energy intake to REE 

measured by IC. Importantly, a study of 500 critically ill, 
mechanically ventilated children, demonstrated that a higher 
percentage of goal energy intake was delivered via the 
enteral route and was significantly associated with lower 60-
day mortality [odds ratio (OR) for increasing energy intake from 
33.3% to 66.6%, 0.27 (0.11, 0.67), P=0.002] (2). Comparatively, 
the same study demonstrated higher mortality in patients 
who received parenteral nutrition (PN) [OR 2.61 (1.3, 5.3), 
P=0.008] (2). Based on such observational data showing 
associations between energy intake and outcomes when 
using predictive equations, current guidelines for nutrition 
delivery in critically ill children recommend targeting two-
thirds (2/3rds) of the estimated REE during the first week 
of illness (1,2). 

Protein requirement in critical illness 

Children with burns have similar clinical outcomes as 
critically ill children who experience a depletion of lean 
muscle mass. Thermal or burn injury is illustrative of 
the burden and significance of protein catabolism, a key 
characteristic of the metabolic stress response during 
critical illness (19). Postoperative measurement of protein 
turnover using the 15N-glycine based urinary end-product 
enrichment technique in children following thoracic 
surgery, demonstrates elevation of both protein synthesis 
and breakdown (19,20). However synthetic rates of protein 
intake are unable to offset the degree of breakdown 
resulting in a net negative protein balance, and loss of 
muscle mass (20). The critical depletion in lean mass from 
a prolonged stress response may be further exacerbated by 
lack of intake of protein/amino acid substrate to support 
protein synthesis (21,22). Using measurements of isokinetic 
dynamometry (measures force and torque), the impact of 
this loss of lean mass in pediatric burn patients resulted in a 
decrease in functional muscle assessments (19). 

Practical aspects of protein intake during 
critical illness

Protein delivery remains low in the acute phase of critical 
illness (22-24). Findings from a study of more than  
1,200 children mechanically ventilated for greater than  
48 hours, with median protein prescription of 1.9 g/kg/day, 
and delivery of 0.66 g/kg/day (38% of prescribed) showed 
protein intake (as a percentage of the prescribed goal) was 
indirectly associated with increased 60-day mortality (22,25).

Optimal protein delivery and intake is elusive and 
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the ideal dose that results in improved clinical outcomes 
unknown. Several small randomized trials compare high 
versus low protein dose and its impact on protein balance 
in pediatric critical illness (1). These trials are inconclusive 
due to being conducted in heterogeneous populations, 
protein dose variation, route of delivery and inability to 
provide significant, consistent outcomes relationships. 
Despite this, based on large observational studies and 
small trials, a minimum protein intake of 1.5 g/kg/day is 
recommended to maintain positive nitrogen balance and 
prevent loss of lean mass in critically ill children (1,6). A 
dose outcome relationship has only been established with 
enteral protein intake. While it is currently more feasible to 
consistently deliver increased doses of protein parenterally, 
the benefit of increased parenteral protein delivery has not 
been adequately demonstrated and recent data suggests 
harm with PN protein delivery during the initial 24 hours 
of PICU admission (24,26).

Strategies for energy and protein delivery

Once energy and protein needs are determined, enteral 
feeds should be initiated as soon as possible with feed 
advancement in a stepwise manner using feeding algorithms 
to attain target energy and protein intake (25-28). In 
vulnerable patients where the oral or enteral route EN is 
insufficient or not feasible, PN must be considered by the 
end of the first PICU week (29). However, such a pragmatic 
approach, where it is initiated neither too early nor too late, 
has not been tested in a well-designed trial. A strategy of 
using an approach of EEN combined with pragmatic PN 
aimed at delivering individualized macronutrient targets 
may be the most reasonable approach in certain patient 
populations. 

Early initiation of EN in critically ill children
Unlike adults, nutrition therapy in critically ill children 
must also account for differences in maintenance of 
nutritional status, safeguarding growth, and variances in 
metabolism as a function of age, size and state of illness 
(1,6). Adult and pediatric guidelines for nutrition therapy in 
critical illness recommend early initiation of enteral feeds 
to improve clinical outcomes (1,6,30,31). Enteral feeds 
promote and maintain GI mucosal integrity and function 
(31,32). Studies suggest benefits include fewer infections 
and better healing, with overall improved short-term and 
long-term clinical outcomes (33-36). 

Pediatric data for the efficacy of EEN are largely derived 

from observational and retrospective studies, and do not 
have the same evidence from randomized controlled trials 
(RCTs) as adult studies (37-42). Globally, surveys of clinical 
practice demonstrate wide variation in approach to nutrition 
therapy in critically ill children (8,43-45). Smaller studies 
in this population have demonstrated beneficial changes 
in nutritional biomarkers, nitrogen balance, inflammatory 
cytokines and immune mechanisms from provision of EEN 
(38-42,46,47). 

Defining EEN varies widely, from as early as six hours 
to as late as 72 hours following onset of critical illness and 
PICU admission (48-51). Studies of EEN in critically ill 
children vary and include the general PICU population as 
well as children with disease specific states (48-56). Table 1 
summarizes key studies of EEN in critically ill children. 
EEN in general PICU population
In general studies of EEN in PICU populations have 
reported a trend of fewer infections, a reduction in 
measures of ICU dependency, less organ dysfunction and 
decreased mortality (28,48,49). In addition, there may be 
an association between an increased proportion of EEN 
relative to goal energy prescription and decreased mortality, 
supporting a dose-response relationship (2,28,31,56,57). 
EEN in children with critical illness specific disease states
In specific disease states as with a general PICU population, 
studies suggest EEN to be safe and beneficial even with 
heterogeneity of diagnosis, presentation at time of illness 
and interventions in the PICU setting. Retrospectives 
studies where EEN was initiated in critically ill children 
with acute respiratory failure from acute lung injury and/
or acute respiratory distress demonstrated decreased length 
of stay, lower severity of respiratory failure, reduced use of 
vasoactive agents and decreased mortality (3,50,58). 

Evidence for EEN is lacking in children with septic 
shock or other sepsis-associated illness and organ 
dysfunction. In the absence of such evidence and without 
contraindications to provision of EN, there is a clinical 
preference to commence EEN within 48 hours of admission 
in children with septic shock or sepsis-associated organ 
dysfunction. Recent pediatric sepsis guidelines, support 
initiation of EEN when appropriate, based on the child’s 
clinical status (7). 

Initiation of EEN in children with traumatic brain 
injury (TBI) is associated with better clinical and functional 
outcomes (51,52). Recent studies favored EEN initiated in 
within 72 hours and demonstrated that delayed initiation 
of EN (greater than 48 hours) in children with TBI was an 
independent risk factor for worse functional status at PICU 
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discharge (51,52,59).
In studies of critically ill children supported with 

extracorporeal membrane oxygenation (ECMO) findings 
suggest improved survival with use of EEN (53,54). 
Despite its suggested benefit and evidence in other PICU 
populations, use of EEN in children who require ECMO is 
variable and without clear guidelines (53-55).

Evidence to support EEN initiation in children with 
congenital heart disease undergoing cardiac surgery with 
cardiopulmonary bypass is limited but growing. This group 
constitutes an important cohort of critically ill children 
(56,57). Studies suggest use of EN is associated with 
decreased duration of mechanical ventilation, PICU length 
of stay and overall improved nutritional outcomes (56,57,60).

Strategies for nutrition delivery in PICU populations

Strategies related to initiation of enteral feeding in critically 
ill children must consider the severity of illness, the 
child’s nutritional status, and presence of clear criteria for 
monitoring feeding tolerance. 

Use of a feeding protocol is a strategy that has 
demonstrated positive utility in EN provision for critically 
ill children (25-27), and current feeding guidelines 
recommended their use (1,6). Additionally, feeding protocol 
use is aligned with early feed initiation, minimization of 
avoidable interruptions and achievement of targeted fluid, 
energy and protein goals (25-27). Common avoidable 
interruptions for delivery of EN in critically ill children 
include real or perceived feeding intolerance, emesis, 
diarrhea, feeding device occlusion or malfunction, and 
unplanned procedures (23,58,59,61). Collaboration with 
a critical care trained registered dietitian and a focus on 
accurate assessment, determination of energy requirements 
and clear, timely and accurate prescription are additional 
strategies to successful EN initiation and advancement in 
critically ill children (1,6,29,30,32,62-66).

Nutrition considerations in pediatric surgical 
critical care

Preparation for surgery begins months in advance with a 
detailed history, nutrition assessment, and review of growth 
parameters to identify and correct derangements and 
optimize the child’s health prior to surgical intervention 
(60,67,68). Malnutrition is an associated independent 
variable in surgical outcomes, putting these children 
at increased risk for adverse postsurgical reactions 

(63,64,69). The risk increases for children who require 
PICU admission, up to 30% present with malnutrition 
(2,43,65,70). Multidisciplinary coordination with a 
systematic plan of care is necessary to ensure nutrition 
therapy continues throughout the perioperative period with 
close follow-up after discharge. 

Integral to the success of the surgical encounter are the 
Enhanced Recovery after Surgery (ERAS) guidelines (63). 
First introduced in adults, these guidelines have gained 
momentum in pediatric surgery. ERAS is a multidisciplinary, 
multimodal approach to longitudinal pediatric surgical care, 
with overarching principles designed to limit the amount of 
time without nutritional intake, reduce perioperative stress and 
adjust treatment and therapies that will potentially contribute to 
long term caloric and protein deficits (63,66). ERAS guidelines 
are to limit variability across the numerous services who care for 
pediatric surgical patients during the hospitalization. 

At the core of the ERAS guidelines are a focus on 
nutrition and metabolism, while limiting surgical stress 
and minimizing barriers to restoring normal digestion, 
absorption and utilization of energy (63). Studies evaluating 
use of ERAS are limited, yet findings report a reduction 
in hospital length of stay, decreased time to resume oral or 
enteral intake and reduced time to return of bowel function 
(66,71,72). Children are more sensitive to operative stress, 
to alterations in thermoregulation and glucose control. 
They have unique considerations that differ from adults, 
therefore use of the ERAS bundle guidelines may be a 
useful strategy to enhance postoperative care and improve 
surgical outcomes (73). 

Preoperative considerations 

A major aspect to consider in the immediate preoperative 
period are fasting times. Limited glycogen stores make 
children and infants more sensitive to fasting than adults 
(74,75). The purpose of enteral fasting is to achieve gastric 
emptying prior to induction of anesthesia to minimize 
the risk of aspiration and subsequent complications (76). 
Current perioperative guidelines no longer instruct families 
to fast children for prolonged periods prior to surgery (77).  
Instead, preoperative guidelines now recommend an 
allowance for clear liquids up to two hours prior to surgery, 
with breast milk and solids permissible until four and six 
hours, respectively (74,78). Despite this, fasting times 
remain widely variable with reported preoperative median 
times ranging from four to 10.5 hours (74,78-80). In the 
critically ill patient, pre-operative fasting guidelines require 
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individualized modification due to gastric dysmotility 
induced by the illness.

Aligned with the updated preoperative fasting guidelines, 
administration of a carbohydrate drink has been used in 
pediatric ERAS protocols. In adults, this approach has 
been found to maintain glycogen reserves, decrease insulin 
resistance and minimize protein breakdown (75,81). Data 
suggests carbohydrate drinks may improve comfort and 
reduce anxiety and further implies that these drinks do not 
increase the risk of aspiration, and may facilitate gastric 
emptying (81). There is growing evidence suggesting that 
hyperosmotic preoperative bowel prep is not necessary, it 
can potentially increase the risk of surgical site infection, 
wound dehiscence and cause bowel edema leading to gastric 
dysmotility and enteral feeding intolerance (75). Planned 
preoperative nutritional strategies may help maintain 
metabolic homeostasis and achieve a euvolemic state. Studies 
to better understand the impact of these interventions and 
their effect on surgical recovery in children are needed.

Operative considerations

In  response  to  surgica l  s t ress  the  body re leases 
catecholamines, cortisol, glucagon and cytokines (82). 
The surgical and anesthesia teams each have a role in 
limiting this stress. An anesthetic plan with limited use of 
opiates will reduce the incidence of postoperative intestinal 
ileus and promote early reintroduction of oral or enteral 
feeds. Regional anesthesia is used to decrease the amount 
and frequency of postoperative sedatives and anxiolytics 
and has been shown to reduce the inflammatory and 
metabolic responses while increasing gut motility (83).  
Intraoperatively, the goal of fluid administration is 
euvolemia. Fluid overload potentially has several adverse 
effects including increase in mechanical ventilation 
days, bowel edema leading to an ileus with intolerance 
of nutrients into the GI tract, and prolonged time to 
mobilization and rehabilitation. Lastly, avoidance of 
prolonged use of unnecessary enteral tubes and drains 
(nasogastric tube, or gastric decompression catheters) and 
promotes early mobilization and return of gastric motility. 

Postoperative considerations

Following surgery, the major nutritional goal is the 
restoration of normal GI function allowing nutrient intake. 
If mechanically ventilated, clear metrics of criteria for 
extubation should be set. Once extubated, a postoperative 

nausea and vomiting regimen may be needed to support 
the re-introduction of oral or EN (84). Some pediatric 
postoperative feeding protocols recommend starting 
clear fluids within two hours following surgery in low-
risk patients with the goal of starting EN within 24 hours. 
Progressing the patient to full oral or enteral intake will 
facilitate the provision of nutrient delivery to mitigate the 
catabolism that occurs with surgical stress and enhance 
wound healing. 

Suboptimal nutritional intake during the postoperative 
period, put children at risk for nutritional deterioration 
causing slow restoration of endogenous protein and delaying 
recovery (85). Potential postoperative complications such as 
infection, inflammation, protein loss and prolonged catabolism 
may extend surgical stress if appropriate interventions such 
as nutrition therapy are not implemented (77). Feeding 
interruption with prolonged duration is a known causative 
factor of decreased EN intake in the postoperative patient 
(85,86). Real or perceived feeding intolerance, feeding device 
mechanical issues, and preprocedural fasting are commonly 
identified reasons for feeding cessation (85). 

The multidisciplinary focus on nutrition and metabolism 
throughout the entire perioperative period may positively 
impact surgical outcomes. 

EN for critically ill children on vasoactive 
medications

 

Provision of EN to critically ill children who require use 
of vasoactive medication infusions is variable (86,87). In 
addition to overall clinical status, factors to consider are 
vasoactive medication infusion dose, known or suspected GI 
dysfunction, and evidence of tissue hypoxia with subsequent 
multiple organ dysfunction syndrome. Gut dysfunction 
with disruption of the intestinal barrier can occur due to an 
alteration in splanchnic circulation owing to the severity of 
illness, the resuscitation efforts, and the current treatments 
and therapies the child requires (87-90). Data in both adult 
and pediatric critically ill patients demonstrate safe, well-
tolerated administration of EN while receiving vasoactive 
medications (4,88,91,92). Recent guidelines for nutrition 
therapy in critically ill adults acknowledge that patients may 
benefit from EN while receiving vasoactive medications 
(30,31).

The use of vasoactive medications for hemodynamic 
support is often thought to be a contraindication to EN due 
to hypoperfusion to the gut that can result in mesenteric 
ischemia. Uncertainty in adequacy of splanchnic circulation 
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and GI perfusion often causes reluctance to feed a gut that 
may be compromised (86,93). Alterations in splanchnic 
perfusion can decrease normal function of the GI tract, 
causing an increase in oxygen demand, reduced absorption, 
and a decrease in peristalsis. This can increase the risk 
for bowel obstruction or perforation which is associated 
with increased mortality (87,91). In fact, EN may have a 
protective role in preserving gut integrity, by stimulating 
blood flow to the GI tract, enhancing gastric emptying and 
lowering the risk of bacterial translocation (94). Studies 
suggest use of the functioning GI tract in patients who 
require vasoactive medications is well tolerated and the 
benefits may outweigh the risks. 

The American and European Guidelines for nutrition 
therapy in critically ill children recommend EN when safe 
and appropriate, including those children who require 
vasoactive medication support (1,6). Retrospective studies in 
children on vasoactive medication infusions of dobutamine, 
dopamine, epinephrine, milrinone, norepinephrine, 
phenylephrine and vasopressin who were enterally fed 
suggest the provision of EN is safe and use of vasoactive 
medications is not exclusively contraindicated and may 
overall be beneficial (84,92). 

A systematic approach including use of a feeding 
protocol, close monitoring with clear definitions of feeding 
intolerance is a strategy to employ in critically ill children 
requiring vasoactive medications to optimize nutrient 
delivery, support GI function and decrease risks that may 
ensue due to the patient’s changing clinical status. The 
lack of RCTs and limited evidence in this area of pediatric 
critical care should not be an absolute contraindication to 
enterally feeding patients who require vasoactive medication 
infusions, instead an understanding of the risks and benefits 
of EN in these patients is warranted. 

Conclusions

Optimizing EN in the pediatric critically ill patient can 
be extremely challenging. The heterogeneity of children 
by disease entity and the response to stress, age, nutrition 
status and differences in body size require special attention 
to nutrition therapy. All children admitted to the PICU are 
at increased risk for suboptimal nutrition therapy owing 
to competing priorities of care. However, there is ever-
increasing data favoring EN therapy. This combined with 
demonstrated improved clinical outcomes, heightened 
understanding of the benefits of nutrition therapy, 
particularly EN, and the availability of evidence-based 

guidelines to support provision of nutrition for critically ill 
children, enable pediatric critical care providers collectively 
to appropriately modify care based on each patient’s 
demonstrated need. Further research is necessary to better 
understand how to improve nutrition therapy in various 
populations of critically ill children.
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