
Page 1 of 15

© Pediatric Medicine. All rights reserved. Pediatr Med 2021;4:17 | http://dx.doi.org/10.21037/pm-21-7

Introduction

The genesis of significant neonatal hyperbilirubinemia 
[total serum bilirubin (TSB) ≥17 mg/dL (291 μmol/L)] (1) 
is characterized by etiologic heterogeneity, environmental 
modulation, and the interaction of multiple gene loci (2-6).  
Comprehensive reviews of specific genetic contributors 
to neonatal jaundice have been published and suggest 
that in addition to inherited hemolytic conditions such 
as hereditary spherocytosis, common icterogenic gene 
variants with individually small effects may act as modifiers 
of hyperbilirubinemia and kernicterus risk (2-6). Damaging 
mutations (e.g., those of Crigler-Najjar type I) also 

contribute to the overall genetic architecture of neonatal 
hyperbilirubinemia but, fortunately, are rare. The current 
review targets the effect biologic sex, uridine diphosphate 
glucuronosyltransferase isoenzyme UGT1A1 (OMIM 
*191740) gene variants of Gilbert syndrome (OMIM 
#143500), and co-expression of icterogenic alleles have on 
potentiating hyperbilirubinemia risk in neonates. 

Sexual dimorphism in neonatal 
hyperbilirubinemia and kernicterus risk

One of the most frequently reported, yet often overlooked, 
genetic based contributors to hyperbilirubinemia and 
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kernicterus risk is the biologic sex of the neonate. Male 
neonates have higher TSB concentrations (7-9), higher 
rates of non-physiologic hyperbilirubinemia [TSB  
>12 mg/dL; >205 μmol/L (10)] and are at greater risk for 
hospital readmission for neonatal jaundice (9,11,12) than 
female neonates. Similarly, a male sex bias typifies extreme 
(TSB ≥25 mg/dL) and hazardous (TSB ≥30 mg/dL)  
hyperbilirubinemia cohorts (13) as well as kernicterus 
registries (1,14-20). The greater male susceptibility to 
bilirubin-induced brain damage, on an order of more than 
2:1 in some reports (1,14,20), is a consistent finding across 
many countries, including the United States (1,14), the 
United Kingdom and Ireland (15), Canada (16), Egypt (17), 
Denmark (19), Sweden (18), and China (20). Earlier studies 
reported a male preponderance in preterm kernicterus (21),  
in neonatal mortality attributed to kernicterus in 
erythroblastosis fetalis (22), and correspondingly in autopsy 
case series of kernicterus (23).

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, 
an X-linked condition consistently overrepresented as a 
cause of kernicterus across the globe (24), in all probability 
contributes to the male preponderance in bilirubin-
induced brain damage. Similarly, Gilbert syndrome, a 
hyperbilirubinemia potentiating genetic condition, is more 
prevalent in males (25-28). It is doubtful, however, that 
these clinical entities alone account for the greater numbers 
of affected males among kernicterus cases. 

Although recognition of this male sex bias has no relevance 
to the care of neonates (female neonates are at risk for 
kernicterus and are evaluated and managed the same as their 
male counterparts), it is surprising the male sex kernicterus bias 
has received limited examination and not been exploited to 
enhance our understanding of bilirubin-induced brain injury. 

The Gunn rat model of neonatal hyperbilirubinemia 
mirrors humans in sharing a male sex bias for kernicterus 
and thereby lends itself as a tool for investigating the 
nature of sexual dimorphism in kernicterus (29,30). 
Existing data on male-female differences in jaundiced (j/j)  
hyperbilirubinemic Gunn rat pups, including those 
collected during sulfadimethoxine induced acute bilirubin 
encephalopathy, are limited and shown in Table 1 . 
They demonstrate that advanced stages of neuromotor 
dysfunction and kernicterus in hyperbilirubinemic male 
j/j Gunn rat pups are associated with a two-fold greater 
cerebellar and brainstem bilirubin content than in their 
jaundiced female j/j littermate pairs (30). Given similar 
baseline TSB, serum albumin, and calculated free bilirubin 
levels (30), one would presume the sulfadimethoxine 

induced CNS bilirubin exposure itself should be similar 
between male and female j/j Gunn rat pups. The notable 
greater cerebellar bilirubin content in j/j male pups may 
therefore reflect sex specific differences in CNS bilirubin 
uptake and clearance (30). CNS bilirubin content is 
modulated in part by the efflux transporter P-glycoprotein 
(33-35) an ATP binding cassette (ABC) transmembrane 
protein encoded by the ABCB1 gene and expressed in 
microvessel endothelial cells of the blood-brain barrier in 
human neonates (36). There are, however, no data on sex 
specific CNS P-glycoprotein expression patterns or the 
impact of non-synonymous ABCB1 gene variants (37,38) on 
P-glycoprotein function in the neonatal period. 

Table 1 also highlights a more robust microglial response 
in j/j male pups during sulfadimethoxine induced acute 
bilirubin encephalopathy. Although neuroinflammation 
routinely accompanies bilirubin induced brain damage (39), 
it is unclear if the greater number of microglia, including 
amoeboid activated microglia, in encephalopathic male j/j 
Gunn rat pup cerebellum simply mirrors or contributes to 
the bilirubin-induced injury. 

One potential experimental approach to explore male-
female j/j Gunn rat pup differences in susceptibility to 
bilirubin-induced brain injury is hormonal manipulation. 
Plasma estradiol in the female Gunn rat pups is protein 
bound and does not exert an effect in the CNS. By 
contrast, males produce testosterone which is able to 
cross the BBB and enter the CNS where it either exerts 
a direct androgenic effect or is converted to estradiol by 
tissue aromatase in a region-specific fashion (40). Notably, 
aromatase levels are undetectable in both male and female 
rat pup cerebellum (41,42) including the Gunn rat strain 
(unpublished observations). Other possible experimental 
manipulations could include castrating Gunn rat male pups 
or treating females with testosterone. Regardless, the male 
sex bias in bilirubin-induced brain injury merits further 
study in the continued effort to more fully understand the 
cascade of events leading to kernicterus. 

Gilbert syndrome and the neonate

Gilbert syndrome is a common congenital inborn error 
of hepatic bilirubin conjugation wherein UGT1A1 
isoenzyme activity is reduced by ~70% or more (43,44). 
Many pediatricians have long speculated a role for Gilbert 
syndrome in potentiating neonatal hyperbilirubinemia 
(45-48). Following the seminal genetic characterizations 
of Gilbert syndrome (43,49-51) more than twenty-five 
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years ago, support for this conjecture has grown as has 
our understanding of the roles genetic heterogeneity and 
UGT1A1 variant allele co-expression play in this condition.

Molecular genetics of Gilbert syndrome

A schematic diagram of the UGT1A1 gene is shown in 
Figure 1. Originally defined by an extra thymine-adenine 
(TA) dinucleotide repeat within the A(TA)nTAA element 
of the UGT1A1 TATAA box promoter (UGT1A1*28) in 
European populations (43,49) and missense mutations in 
UGT1A1 exons (UGT1A1*6, UGT1A1*7, UGT1A1*27, 
UGT1A1*29) in Japan (50,51), at least 14 additional 
UGT1A1 variant alleles have been identified in association 
with a Gilbert syndrome phenotype (Table 2). Generally 
held to be an autosomal recessive condition (63), Gilbert 
syndrome may be inherited in an autosomal dominant 
manner when UGT1A1 exon variants are operative; 
UGT1A1*6 is a prime example (50,51,64-66). Inheritance 
is subject to variable penetrance and expressivity (43) 
depending on the nature of the UGT1A1 variant, the 
co-expression of modifying alleles, and the presence of 

environmental factors. 
Adding to this complexity, Ehmer et al. report that Gilbert 

syndrome often represents an expanded genetic haplotype 
encompassing co-expression of UGT1A3, UGT1A6, 
and UGT1A7 variants in addition to those of UGT1A1 
(Figure 1) (53). Greater than three quarters of individuals 
homozygous for UGT1A1*28 from the Ehmer et al. white 
northern European cohort were concurrently homozygous 
for UGT1A3-66 T>C, UGT1A6*2a and UGT1A7*3 (53). 
Moreover, higher TSB levels were observed in those 
carrying the expanded four gene UGT1A haplotype 
than in those homozygous for UGT1A1*28 alone (53).  
It is unclear, however, whether this or an analogous 
expanded haplotype is expressed in other populations. 
Similarly, it is uncertain how the expanded four gene 
UGT1A haplotype enhances hyperbilirubinemia given 
that only UGT1A1 effectively conjugates bilirubin (67).  
Nothing is known about the perinatal, neonatal or 
postnatal expression of this expanded UGT1A haplotype 
or how it might impact neonatal hyperbilirubinemia risk. 
Regardless, this review will only examine UGT1A1 variant 
polymorphisms of Gilbert syndrome. 

Table 1 Male-female differences in hyperbilirubinemic j/j Gunn rat pups in sulfadimethoxine-induced acute bilirubin encephalopathy

Variables Male Female Reference

% BIND score* ≥2 ~80% ~50% Unpublished observations

Total serum bilirubin (mg/dL)** 7.1±1.2 7.5±1.1 (30)

Serum albumin (g/dL)** 3.2±0.6 3.1±0.5 (30)

Calculated unbound bilirubin (µmol/L)** 0.149±0.028 0.153±0.021 (30)

Cerebellar bilirubin content (ug/g tissue) 17.9±8.8# 9.2±6.8 (30)

Brainstem bilirubin content (ug/g tissue) 10.8±8.1 6.8±2.9 (30)

Microglia (per hpf)+ 39.8±27.8 18.9±7.4 Unpublished observations

Activated microglia (per hpf)+ 17.0±11.2 10.5±8.2 Unpublished observations

Activated microglia in granular layer (per hpf)+ 14.0±5.8 6.7±6.1 Unpublished observations

Kernicterus† 57.6% 40.5% (29)

Except where otherwise indicated, data were measured 24 hours following sulfadimethoxine triggered acute bilirubin encephalopathy. 
*, bilirubin-induced neurologic dysfunction (BIND) score quantifies gait abnormalities and dystonia in hyperbilirubinemic j/j Gunn rats. 
Score ranges from 0 to 5 based on the following signs: 0= normal; 1= mildly abnormal with slight hindlimb ataxia; 2= mild hindlimb ataxia, 
dystonia and gait abnormality with impaired righting reflex; 3= abnormal as in 2, but with more severe movement disorder and prolonged 
righting reflex; 4= severe failure of locomotion, general lack of spontaneous movement with occasional bursts of hyperactivity and no 
righting reflex; 5= moribund including seizures and/or agonal respirations (31,32). **, prior to sulfadimethoxine dosing. #, P<0.02 compared 
with female cerebellum (Cannon 2006). +, cerebellar microglia CD11b/c immunofluorescence (OX-42, Serotec, Raleigh, NC) counts were 
characterized as activated microglia if they displayed a larger, more rounded amoeboid soma and thicker less ramified processes. Counts 
were expressed as number of microglia per high powered field (400×) based on a minimum of 3 non-overlapping fields (mean ± SD). †, in 
absence of sulfadimethoxine induced bilirubin encephalopathy.
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Gilbert syndrome and neonatal 
hyperbilirubinemia risk

Bancroft et al. in 1998 were the first to explore the relationship 
between a Gilbert syndrome genotype, specifically 
UGT1A1*28, and neonatal hyperbilirubinemia (68).  
Their findings, from a largely white-non-Hispanic cohort, 
demonstrated an increased rate of rise in transcutaneous 
bilirubin levels during the first two days of life in 
UGT1A1*28 homozygous neonates (68). Despite the 
enhanced rate of rise, peak transcutaneous bilirubin levels 
in neonates with Gilbert syndrome did not differ from 
wild type controls (68). Bancroft et al. concluded that the 
“determination of the relative role of this genetic variable in 
the assessment of overall neonatal jaundice risk will require 
completion of a prospective study with multivariate analysis 

to examine various combinations of jaundice risk factors” (68). 
Numerous such studies published over the ensuing 

decades support a potentiating role for Gilbert syndrome in 
neonatal hyperbilirubinemia risk, depending on the specific 
genotype, study population, the presence of breastmilk 
feeding, and/or hemolytic disease. The most prevalent 
polymorphic gene variants involved are UGT1A1*28, 
UGT1A1*6, and UGT1A1*60.

UGT1A1*28

The Gilbert syndrome promoter sequence variant UGT1A1*28 
is common to individuals of European and African ancestry 
(57,69,70). Several studies (2,3,64,71-76), but not all 
(10,65,77,78), suggest that UGT1A1*28 alone poses limited 
to no enhanced neonatal hyperbilirubinemia risk. Published 

Figure 1 Diagram of the human UGT1A gene located on chromosome 2q37. The uppermost panel represents the entire UGT1A gene 
complex which includes UGT1A1 (dark gray), additional exons 3–7 that encode functional proteins (exon 8–10 and 13 not shown), three 
pseudogenes (2P,11P,12P), and the common exons 2–5, shared across all UGT1A transcripts. The lower panel shows the unique UGT1A1 
exon coupled with common exons 2–5, the upstream glucuronosyltransferase phenobarbital responsive enhancer module (gtPBREM) 
encompassing seven nuclear receptor elements (DR4, GRE1, gtNR1, XRE, PPRE, DR3, GRE2), their transcription factors CAR, PXR, 
GR (glucocorticoid receptor), Ahr (aryl hydrocarbon receptor), and PPARα, as well as the TATA box promoter sequence [adapted from 
(3,52)]. The hepatocyte nuclear factor 1 (HNF1) region is located between gtPBREM and the TATA box and contains the HNF1α binding 
site (52). Specific UGT1A1 hypomorphic Gilbert syndrome allele variants and their location are labelled using given numbers preceded by 
an asterisk. The UGT1A3-66T>C, UGT1A6*2a, UGT1A7*3, UGT1A1*28 haplotype reported in over three quarters of Gilbert syndrome 
subjects of northern European descent is highlighted in light gray (53). UGT1A7*3 combines UGT1A7 coding sequence variants p.N129K/
p.R131K and p.W208R (53); whereas the UGT1A6*2a genotype combines UGT1A6 coding sequence variants p.Ser7Ala, p.Thr181Ala, and 
p.Arg184Ser (53). 
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meta-analyses confirm the same (64) or at least less icterogenic 
potential than UGT1A1*6 (64). The UGT1A1*28 variant, 
however, when co-expressed with UGT1A1 coding sequence 
variants or icterogenic conditions such as breastfeeding and 
hemolytic disease, appears to augment hyperbilirubinemia risk. 

UGT1A1*6

In marked contrast to UGT1A1*28, it is increasingly 
apparent that the UGT1A1 exon 1 coding sequence variant 
UGT1A1*6, common to Asian populations, in itself exerts 
an icterogenic effect. UGT1A1*6 acts as an independent 
risk factor for neonatal hyperbilirubinemia (64-66,79-82) 
and contributes to, and in fact may primarily underlie, the 
widely recognized increased neonatal hyperbilirubinemia 
risk among Asian populations (83-85). This association is 
robust as confirmed by at least three large meta-analyses, 
irrespective of genetic modeling approach (homozygous, 
heterozygous, dominant or recessive) (64-66), a fundamental 

effect that may relate to the greater reduction in UGT1A1 
enzymatic activity (~14% of wild type levels) associated 
with this variant (50). Not surprisingly, co-expression of 
UGT1A1*6 with other coding sequence variants, promoter 
variants, hemolytic conditions, and breastfeeding further 
increases hyperbilirubinemia risk. 

UGT1A1*60

The UGT1A1*60 variant has been of great interest in efforts 
to understand the genetic nature of Gilbert syndrome. This 
promoter variant is located in the glucuronosyltransferase 
phenobarbital responsive enhancer module (gtPBREM) 
cluster (Figure 1), a regulatory element containing multiple 
binding sites for nuclear receptor motifs including the 
constitutive androstane receptor (CAR), the pregnane X 
receptor (PXR), the xenobiotic responsive element (XRE), 
peroxisome proliferator-activated receptor alpha (PPARα), 
and glucocorticoid responsive elements (GRE) (52). 

Table 2 Individual UGT1A1 gene variants reported in Gilbert syndrome

Allele Nucleotide change Amino acid change Variant location Reference

UGT1A1*1 A(TA)6TAA Wild type Promoter –

UGT1A1*6 211(G>A) G71R Exon 1 (54)

UGT1A1*28 A(TA)6TAA to A(TA)7TAA n/a Promoter (43)

UGT1A1*60 −3279(T>G) n/a Promoter (55,56)

UGT1A1*7 1456(T>G) Y486D Exon 5 (54)

UGT1A1*27 686(C>A) P229Q Exon 1 (51)

UGT1A1*37 A(TA)6TAA to A(TA)8TAA n/a Promoter (57 )

UGT1A1*62 247(T>C) F83L Exon 1 (58)

UGT1A1*64 488-491 dupACCT Frameshift Exon 1 (59)

UGT1A1*65 −1126(C>T) n/a Promoter (59)

UGT1A1*66 997-82(T>C) n/a Intron 2 (59)

UGT1A1*67 −85 to −83 ins CAT n/a Promoter (60)

UGT1A1*68 −63(G>C) n/a Promoter (60)

UGT1A1*69 476(T>C) I159T Exon 1 (60)

UGT1A1*70 962(C>G) A321G Exon 2 (60)

UGT1A1*72 1075(G>A) D359N Exon 3 (60)

UGT1A1*73 1091(C>T) P364L Exon 4 (60)

UGT1A1*81 −64(G>C) n/a Promoter (61)

Alleles shaded in gray are polymorphic. Adapted updated and modified from reference (62). Reproduced with permission of Taylor & 
Francis Inc. 
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UGT1A1*60, in contrast to most other variants, is common 
across studied populations regardless of biogeographic 
heritage with allele frequencies generally between 0.25 
and 0.50 (3). Studies report a high degree of linkage 
disequilibrium between UGT1A1*60 and UGT1A1*28, an 
association asserted by some (69) [but not all (86,87)] as 
essential to the genesis of Gilbert syndrome. Linkage of 
UGT1A1*60 with UGT1A1*6 has also been reported (28).  
However, investigations suggest that homozygous expression 
of UGT1A1*60 alone can be associated with reduced 
UGT1A1 transcriptional activity (55,56) and itself account 
for Gilbert syndrome in some populations (56). A recent 
meta-analysis shows that UGT1A1*60 is associated with a 
significant increased risk for neonatal hyperbilirubinemia, 
albeit the study did not rule out linkage with other variants as 
the mechanism (88). Given the cluster of regulatory elements 
contained in gtPBREM and their potential roles in regulating 
the developmental expression of UGT1A1, it is important to 
further clarify the nature of variants localized to that region 
of the UGT1A1 promoter (52,89,90). 

Spectrum of neonatal hyperbilirubinemia risk in 
Gilbert syndrome 

Taken together the UGT1A1*28 and UGT1A1*6 studies 
detailed above suggest there is a spectrum of neonatal 
hyperbilirubinemia risk across Gilbert syndrome genotypes 

(64-66), depending on the variant(s) involved and 
expression mode. Neonates homozygous for UGT1A1*6 
demonstrate the highest reported odds ratios for neonatal 
hyperbil irubinemia risk among Gilbert syndrome 
variants (65,66), one that is notably higher than those 
homozygous for UGT1A1*28 (Figure 2). UGT1A1*6 
allele carriers also evidence a significantly increased 
neonatal hyperbilirubinemia risk compared to wild type 
(64-66) whereas allele carriers for UGT1A1*28 show 
borderline to non-significant associations with neonatal 
hyperbilirubinemia risk (64,65) (Figure 2). Monaghan  
et al. suggested a similar divergence in hyperbilirubinemia 
risk in their 1996 study of adults when they asserted 
there were both “mild and more severe forms of Gilbert’s 
syndrome” (49). The ‘mild’ form was related to expression 
of UGT1A1 promoter variants whereas ‘more severe forms’ 
were due to UGT1A1 coding sequence variants (49). In 
fact, promoter variants alone may not always be sufficient 
to develop a Gilbert syndrome phenotype (43), whereas 
biallelic expression of coding sequence variants associated 
with Gilbert syndrome may lead to TSB levels intermediate 
between Gilbert syndrome and Crigler-Najjar syndrome 
type II (91). Indeed, the genetic characterization of the non-
hemolytic hyperbilirubinemias Gilbert syndrome, Crigler-
Najjar syndrome type II and Crigler-Najjar syndrome type I 
are not as invariant and sharply demarcated as once thought, 
but similarly reflect a spectrum of hyperbilirubinemia 

Figure 2 Plot of 95% confidence interval odds ratio for neonatal hyperbilirubinemia risk as a function of UGT1A1*6 and UGT1A1*28 
Gilbert syndrome polymorphism expression. Homozygous UGT1A1*6 expression: (*6/*6), homozygous UGT1A1*28 expression: (*28/*28), 
UGT1A1*6 allele carrier: *6/*6 + *6/*1 vs. *1/*1, UGT1A1*28 allele carrier: *28/*28 + *28/*1 vs. *1/*1. Data from references (64) (+), (65) (**), 
and (66) (#). 
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severity and risk.

UGT1A1 gene variants and hemolysis

Hemolysis is the dominant cause of extreme hyperbilirubinemia, 
acute bilirubin encephalopathy, and kernicterus (92,93). 
Expression of UGT1A1 gene variants of Gilbert syndrome 
with hemolytic conditions may augment the risk of 
significant hyperbilirubinemia (2-5,24,94,95). Kaplan 
et al. was the first to highlight the importance of this 
phenomenon in G6PD deficiency, itself a leading cause of 
kernicterus worldwide (94). In their seminal study, there 
was a dose dependent genetic interaction of UGT1A1*28 
alleles in hemizygous G6PD Mediterranean deficient 
males that enhanced neonatal hyperbilirubinemia (TSB 
>15 mg/dL) risk (94). A similar association has been 
reported between UGT1A1*6 and G6PD deficiency 
in China (95). Others have documented an association 
between UGT1A1*28 and hyperbilirubinemia risk in 
symptomatic ABO hemolytic disease of the newborn, 
hereditary spherocytosis, G6PD deficiency, and beta-
thalassemia (96-100). Correspondingly, a recent report 
from China demonstrates co-expression of UGT1A1*6 
and ANK1 mutations of hereditary spherocytosis (101).  
The Gilbert syndrome variants icterogenic augmenting 
effect in hemolytic conditions does not appear to be related 
to any change in heme catabolism (96). Collectively, these 
studies illustrate the importance of coupling genetically 
determined hemolytic conditions with gene polymorphisms 
that reduce hepatic bilirubin clearance in increasing the risk 
of developing severe neonatal hyperbilirubinemia.

Breastmilk jaundice: a prevalent Gilbert 
syndrome phenotype 

Neonatal hyperbilirubinemia is more common and TSB 
levels are significantly higher in breastfed than in formula-fed 
neonates (102,103). Hyperbilirubinemia in association with 
suboptimal breastmilk intake during the first week of life is 
termed “breast-feeding jaundice”; whereas prolonged jaundice 
in thriving breastfed neonates extending into the second to 
third week of life, occasionally longer, is termed “breastmilk 
jaundice” or “breastmilk jaundice syndrome” (102,103). 
Despite decades of investigation, the operative mechanism(s) 
underlying breastmilk jaundice syndrome remain a source of 
debate; the condition is likely multifactorial in nature. 

Clinical evidence accrued during the past two decades, 
from around the globe, confirm that breastmilk jaundice 

is a prevalent Gilbert syndrome phenotype in neonates 
(10,104-106). Monaghan et al. were the first to highlight 
the association between UGT1A1 gene variants and 
prolonged unconjugated hyperbilirubinemia in breastfed 
term neonates (104). Their study of breastfed Scottish 
neonates showed that those homozygous for the Gilbert 
syndrome UGT1A1*28 promoter variant had a more than 
four-fold increased rate (27%) of prolonged jaundice (TSB 
>150 μmol/L at 14 day) than breast fed infants who were 
homozygous for the wild type UGT1A1*1 allele (6%) (104).  
Zaja et al. demonstrated a similar four-fold impact of 
homozygous UGT1A1*28  expression on the risk of 
breastmilk jaundice of greater than 21 days duration in their 
large Croatian cohort (10). Forty percent were homozygous 
for UGT1A1*28 Gilbert genotype (10). 

Maruo  et al. demonstrated an analogous relationship 
between breastmilk jaundice and the UGT1A1*6 Gilbert 
variant in Japan (105). They reported that 16 of 17 
breastfed Japanese infants with prolonged unconjugated 
hyperbilirubinemia [TSB >10 mg/dL (171 μmol/L) at  
3–4 weeks of age] carried at least one UGT1A1*6 
variant allele. Nine of the 16 were either homozygous 
for UGT1A1*6 (n=8) or compound heterozygous for 
UGT1A1*6 and UGT1A1*28 (n=1), both classic Gilbert 
syndrome genotypes. The homozygous subset evidenced 
a median TSB of 18.8 mg/dL (range, 10.3–31.8 mg/dL) at  
3–4 weeks of age. In a subsequent expanded set of 170 
infants with breastmilk jaundice syndrome, Maruo et al. 
observed that 88 (51.8%) were homozygous for UGT1A1*6, 
as opposed to none in breastfed controls without breast 
milk jaundice (106). They also reported 23 neonates who 
were compound heterozygous for Gilbert variant alleles, 
bringing to a total of 122 (72%) the number of breastmilk 
jaundice infants who carried a Gilbert genotype. If one 
further considers heterozygosity for UGT1A1*6 a Gilbert 
genotype, a widely held premise, then another 26 breastmilk 
jaundice neonates would be added to the total, resulting in 
148 of the 170-breastmilk jaundice cohort (87%) carrying a 
Gilbert syndrome genotype (106). 

Several other studies have demonstrated a strong 
association between the risk (80,81), degree (79,80,107), 
and duration (107) of hyperbilirubinemia and a Gilbert 
syndrome genotype in breastfed neonates from China, 
Taiwan, and Greece. Other findings from these studies 
include a synergistic effect of UGT1A1*6 and breastfeeding 
on the risk of meriting phototherapy (81) and developing a 
TSB of ≥20 mg/dL (342 μmol/L) (79).

How does breastmilk combine with Gilbert syndrome 
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to produce prolonged indirect hyperbilirubinemia? Ramos 
et al. hypothesized that both a breastmilk inhibitor of 
bilirubin conjugation and an impaired hepatic bilirubin 
conjugating system are required for the clinical expression 
of breastmilk jaundice syndrome (108). This conjecture 
is consistent with the fact that not all breastfed neonates 
develop breast milk jaundice syndrome and that formula-
fed infants with Gilbert syndrome do not evidence 
prolonged indirect hyperbilirubinemia. Several different 
substances in breast milk have been suggested to inhibit 
hepatic bilirubin conjugation including pregnane-3α,20β-
diol, nonesterified fatty acids, and oligosaccharides. 
Studies by Tukey and colleagues using a translational 
hyperbilirubinemic humanized UGT1 mouse model suggest 
an important repressive effect of breastmilk oligosaccharides 
on intestinal (as opposed to hepatic) UGT1A1 expression 
in driving breast milk jaundice risk (90,109,110). More 
specifically, human milk oligosaccharides block intestinal 
Toll-like receptor activation and downstream IĸB kinase 
phosphorylation (90,109,110). This in turn represses 
newborn intestinal UGT1A1 activity (90). Formula feeding, 
by contrast, activates IĸB and induces intestinal (but not 
hepatic) UGT1A1 activity thereby lowering the TSB (90). 
Whether this phenomenon is operative in human neonates 
is unclear. UGT1A1 is expressed in adult small intestine 
(duodenum, jejunum and ileum) (111,112), stomach, and 
colon (112) where it is localized to the epithelial cell layer of 
the mucosa, most prominently at the apical portion of the 
crypt enterocytes (111). There are, however, no comparable 
developmental data on intestinal UGT1A1 expression in 
the human fetus or neonate, a knowledge gap that is ripe for 
clinical investigation. 

It is also possible that breastmilk and Gilbert syndrome 
exert their effects via the enterohepatic circulation of 
bilirubin to produce breastmilk jaundice. Breastmilk increases 
intestinal bilirubin absorption (113,114) independent 
of any augmentation of intestinal beta-glucuronidase 
activity. An important feature of Gilbert syndrome is 
a predominance of bilirubin monoglucuronides over 
bilirubin diglucuronides (115,116). This condition should 
increase enterohepatic bilirubin circulation as hydrolysis 
of monoglucuronides back to unconjugated bilirubin 
occurs at rates 4–6 time that of the diglucuronide (117).  
Combined, these breastmilk and Gilbert syndrome 
enterohepatic circulation enhancing effects would increase 
the hepatic bilirubin load while at the same time limit 
the liver’s capacity to conjugate that load, producing an 
increased prolonged unconjugated hyperbilirubinemia risk. 

Biogeographic distribution of UGT1A1 Gilbert 
syndrome variants

As detailed above, the most prevalent genotype underlying 
Gilbert syndrome in European populations is the TATA 
box promoter variant UGT1A1*28 (3,43,69,118). Similarly, 
UGT1A1*28 underlies Gilbert syndrome in Sub-Saharan 
Africa and individuals of African biogeographic heritage 
where the less frequent UGT1A1*37 promoter variant allele 
is also observed (57,69,119). Coding sequence missense 
variants associated with Gilbert syndrome (e.g., UGT1A1*6) 
are distinctly uncommon in Northern European or African 
populations (3,69).

In marked contrast, UGT1A1*6 is the most common 
variant underlying Gilbert syndrome across many Asian 
populations, whereas UGT1A1*28 is less common with the 
exception being populations of the Indian subcontinent 
(India, Bangladesh, Sri Lanka) (77,119). Not surprisingly, 
subgroup analyses by East Asian ethnicity document that 
UGT1A1*6 allele carriers have a significantly increased risk 
of neonatal hyperbilirubinemia in Northeast Asia, Southeast 
Asia, China, Japan, and Malaysia (3,64,82). 

The nature of these biogeographic differences in Gilbert 
syndrome genotypes remains a focus of investigation; 
but distinct genotypes leading to a Gilbert syndrome 
phenotype is consistent with convergent evolution (120). 
Correspondingly, investigators postulate that UGT1A1 
variant alleles represent balanced polymorphisms in human 
evolution maintained by natural selection (57,69). Whether 
this is the case is uncertain (119), as is whether bilirubin 
is the source of selective pressure (69,120,121). There is 
growing evidence, however, that a mildly elevated TSB, 
an endogenous antioxidant, is associated with relative 
protection against an array of diseases (120,122) and may 
thereby provide an evolutionary advantage (3,57,69,120,121). 

Co-expression of icterogenic gene 
polymorphisms

Co-expression of gene polymorphisms that potentiate 
bilirubin production, limit hepatic bilirubin uptake, reduce 
hepatic bilirubin conjugation and clearance is common 
(2,3,123) and contributes to neonatal hyperbilirubinemia 
risk (2,3,79,124). Such co-expression includes two 
interesting and clinically relevant phenomena: compound 
and synergistic heterozygosity. Compound heterozygosity 
refers to the inheritance of alternate alleles from each 
parent located at different loci within the same gene. A 
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prime example is compound heterozygosity for UGT1A1 
variants of Gilbert syndrome, a phenomenon more frequent 
than previously thought (Table 3) (27). Sun et al. recently 
reported as many as three and four UGT1A1 mutation sites 
in individuals with Gilbert syndrome (Table 3) (27). 

In contrast, synergistic heterozygosity refers to 
heterozygosities across different genes that combine to 
produce a range of subtle to more severe phenotypes (126).  
Although initially applied to inborn errors of energy 
metabolism, synergistic heterozygosity is a concept with broad 
clinical applicability including the numerous genes involved 
in bilirubin production, metabolism, and clearance (3).  
Partial defects in one or more of these pathways may 
contribute to hyperbilirubinemia risk (3). Zangen and co-
workers described the occurrence of fatal kernicterus in a 
female neonate heterozygous for the G6PD Mediterranean 

mutat ion and the UGT1A1*28  Gilbert  syndrome 
variant as a paradigm for this phenomenon in neonatal 
hyperbilirubinemia (127). 

Next generation sequencing in the diagnostic 
evaluation of extreme or hazardous neonatal 
hyperbilirubinemia and kernicterus

In almost all reported case series of extreme or hazardous 
hyperbilirubinemia and kernicterus, the etiology of 
the marked hyperbilirubinemia is often unidentified 
(1,14,18,19). This unfortunate situation reflects the limited 
investigative repertoire available to providers in the clinical 
arena. Once maternal antibody mediated hemolysis and 
G6PD deficiency are ruled out, the etiology often remains 
unclear or is conjectured based on the red cell smear and 

Table 3 Reported compound heterozygous UGT1A1 genotypes in Gilbert syndrome

Co-expressed UGT1A1 variant alleles Allele location Ref

UGT1A1*6/UGT1A1*7 Exon 1/exon 5 (27)

UGT1A1*6/UGT1A1*27 Exon 1/exon1 (91)

UGT1A1*6/UGT1A1*28 Exon 1/promoter (27)

UGT1A1*6/UGT1A1*60 Exon 1/enhancer (27)

UGT1A1*6/UGT1A1*73 Exon 1/exon 4 (125)

UGT1A1*7/UGT1A1*73 Exon 1/exon 4 (125)

UGT1A1*27/UGT1A1*60 Exon 1/enhancer (91)

UGT1A1*28/UGT1A1*7 Promoter/exon 5 (27)

UGT1A1*28/UGT1A1*27 Promoter/exon 1 (125)

UGT1A1*28/UGT1A1*29 Promoter/exon 4 (91)

UGT1A1*28/UGT1A1*60 Promoter/enhancer (27)

UGT1A1*28/UGT1A1*73 Promoter/exon 4 (125)

UGT1A1*60/UGT1A1*81 Enhancer/promoter (28)

UGT1A1*6/UGT1A1*27/UGT1A1*28 Exon 1/exon 1/promoter (125)

UGT1A1*6/UGT1A1*28/UGT1A1*60 Exon 1/promoter/enhancer (27)

UGT1A1*6/UGT1A1*28/UGT1A1*73 Exon 1/promoter/exon 4 (125)

UGT1A1*6/UGT1A1*60/UGT1A1*73 Exon 1/enhancer/exon 4 (27)

UGT1A1*28/UGT1A1*27/UGT1A1*60 Promoter/exon1/enhancer (27)

UGT1A1*28/UGT1A1*60/UGT1A1*73 Promoter/enhancer/exon 4 (27)

UGT1A1*6/UGT1A1*27/UGT1A1*28/UGT1A1*60 Exon 1/exon 1/promoter/enhancer (27)

UGT1A1*28/UGT1A1*27/UGT1A1*60/UGT1A1*73 Promoter/exon1/enhancer/exon 4 (27)

Co-expressed UGT1A1 allele genotypes compiled from references (27,28,91,125).
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red cell indices. A firm diagnosis is not made. In the US 
Pilot Kernicterus Registry, idiopathic cases comprised 43% 
of the total demonstrating a median TSB of 36.0 mg/dL  
( 6 1 5  µ m o l / L )  a n d  r a n g e  o f  2 0 . 7 – 5 2 . 0  m g / d L  
(354–889 µmol/L) (14). Few neonates have the capacity to 
generate TSB levels in a hazardous range; many, if not most 
have an underlying hemolytic condition (92,93). Christensen 
and colleagues have utilized a next-generation sequencing 
gene panel targeted on heritable causes of hemolytic anemia 
and disorders of hepatic bilirubin uptake and conjugation 
to clarify the nature of extreme hyperbilirubinemia (92,128) 
and kernicterus (93). They have recently established 
a Neonatal Acute Bilirubin Encephalopathy Registry 
(NABER) that will correlate clinical data with the results of 
sequencing 28 genes involved in bilirubin production and 
metabolism to clarify the nature of hyperbilirubinemia in 
acute bilirubin encephalopathy (129). Molecular diagnosis 
holds an important key in improving our understanding 
of the pathogenesis of hazardous hyperbilirubinemia and 
kernicterus and in identifying means of preventing their 
occurrence (129).
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