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Introduction

In critically ill children, adequate energy intake is associated 
with improved clinical outcome (1-3). The determination 
of energy requirements throughout stay in the pediatric 
intensive care unit (PICU) is challenging and both 
underfeeding and overfeeding have to be avoided. Energy 
requirements are depending on the different phases of 
illness (i.e., the acute, stable and recovery phase) and may 
be affected by the severity of illness and by factors such 
as sedation, muscle relaxants, mechanical ventilation and 
fever. To determine the energy requirements of critically 
ill children, resting energy expenditure (REE) is measured 
with indirect calorimetry (IC) or otherwise calculated using 
a predictive equation, and if needed, disease and activity 
factors are considered.

Measurements of REE by IC in critically ill children

Components of total energy expenditure (TEE) in healthy 
children

In healthy children, the TEE expended by children over  
24 hours is made up by the basal metabolic rate (BMR), the 
thermic effect of food, physical activity, growth and, rarely, 
cold-induced thermogenesis (4). The BMR is the main 
component of TEE, and can be considered as the sum of 
the energy expenditure of the various organs and tissues of 
the body (4,5). BMR—expressed in kcal/kg of body weight 
per day—is high in infants and young children due to their 
body composition with a relatively large proportion of 
organs with high metabolic rate. The energy needed for 
growth results from energy expenditure of protein and lipid 
synthesis and energy deposition in newly formed tissues (4).  
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This expenditure is particularly important in rapidly 
growing infants (approximately up to the age of 12 months) 
and during puberty (6). As a result, TEE is high in young 
children in comparison to older children and adults, as 
illustrated in Figure 1.

Precise measurement of BMR requires very strict 
conditions i.e. fasting for at least 12–14 hours, being awake, 
supine, resting comfortably, not having done strenuous 
exercise in the preceding day, etc. (4). These conditions 
are rarely achieved. Therefore, most studies measure the 
REE—the energy expended when the body is at rest, with 
no extra energy used for muscular effort (4). REE is usually 
slightly higher (up to 10%) than BMR and is often used as a 
proxy for BMR.

Main principles of measurement of REE with IC

For measurement of the REE in clinical practice, IC 

remains the reference method. The principle of IC is that 
energy production by substrate oxidation in the body is 
coupled to oxygen consumption (VO2) and carbon dioxide 
production (VCO2) (8). The ratio between VCO2 and VO2 
associated with metabolic processes at the cellular level is 
called the respiratory quotient (RQ): RQ = VCO2/VO2 (8). 
The RQ and the energy released depend on the particular 
substrate that is oxidized, as described in Table 1. For 
instance, the stoichiometric equation for the oxidation of 
100 gram of glucose is as follows (8):

C6H12O6 + 6O2 = 6CO2 + 6H2O + 673 kcal (RQ = 1)	 [1]
To calculate REE from VO2 and VCO2, various 

formulas have been developed. The Weir formula is the 
most commonly used (9):

REE (kcal/d) = 5.50 VO2 (mL/min) + 1.76 VCO2 (mL/min) 
– 1.99 total urinary nitrogen (g/d)	 [2]

IC measures REE over a brief period (30 minutes–two 
hours) under strict conditions, and this value is mostly used 
for the REE over 24 hours.

Practical use of IC measurement in PICU

To determine energy expenditure in critically ill children 
and guide nutritional support, the European Society of 
Pediatric and Neonatal Intensive Care (ESPNIC) and the 
American Society for Parenteral and Enteral Nutrition 
(A.S.P.E.N) recommend to measure REE, using a validated 
indirect calorimeter, after the acute phase of critical illness 
(10,11). For targeting patients who could be a candidate 

Figure 1 Total energy expenditure in children aged 3–24 months [data from Butte et al. (6)] and REE in critically ill children on mechanical 
ventilation measured by indirect calorimetry [mREE; data from Jotterand Chaparro et al. (7)]. Adapted from Jotterand Chaparro 2016. REE, 
resting energy expenditure.

Table 1 Respiratory quotient (RQ) and calorimetric values 
associated with oxidation of common macronutrients (for 1 gram of 
macronutrient) (8)

Substrate RQ
Caloric value 

(kcal/g)
O2 consumption 

(L/g)
CO2 production 

(L/g)

Glucose 1.00 4.18 0.829 0.829

Protein 0.81 4.32 0.966 0.782

Fat 0.71 9.46 2.019 1.427
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Table 2 Criteria proposed by the A.S.P.E.N to identify patients who are suggested candidates for IC measurement during the PICU stay (12)

Underweight (BMI <5th percentile for age), at risk of overweight (BMI >85th percentile for age) or overweight (BMI >95th percentile for age)

Children with >10% weight gain or loss during ICU stay

Failure to consistently meet prescribed caloric goals

Failure to wean, or need to escalate respiratory support

Need for muscle relaxants for >7 days

Neurologic trauma (traumatic, hypoxic and/or ischemic) with evidence of dysautonomia

Oncologic diagnoses (including children with stem cell or bone marrow transplant)

Children with thermal injury

Children requiring mechanical ventilator support for >7 days

Children suspected to be severely hypermetabolic (status epilepticus, hyperthermia, systemic inflammatory response syndrome, 
dysautonomic storms, etc.) or hypometabolic (hypothermia, hypothyroidism, pentobarbital or midazolam coma, etc.)

Any patient with ICU LOS >4 weeks may benefit from IC to assess adequacy of nutrient intake

IC, indirect calorimetry; PICU, pediatric intensive care unit.

for IC measurement, a list of 11 criteria has been proposed 
(Table 2) (12). It has been shown that according to these 
criteria, more than 70% of children admitted to the PICU 
would require IC measurement (13).

Measuring REE with IC requires financial, technical 
and human resources, which may explain why only a small 
minority of PICUs make use of an indirect calorimeter 
(10–17% of PICUs worldwide) (1,14-16). In ventilated 
patients, some conditions such as high inspired oxygen 
concentrations, potential leaks around the endotracheal 
tube or humidity may lead to inaccurate measurements. 
Clinicians must ensure that conditions for accurate 
calibration of the device and valid measurement at bedside 
are achieved. Until recently, the majority of PICUs used 
the Deltatrac II, (Datex-Ohmeda, Helsinki, Finland), which 
has been validated in critically ill adults and children (17-
19). However, this device is no longer being manufactured. 
Currently, among the available indirect calorimeters used 
in adults (M-COVX, Datex-Ohmeda, Finland; Quark RMR 
and Q-NRG+, Cosmed, Italy, and CCM Express, Medical 

Graphics Corp, UK), none has been validated in ventilated 
critically ill children. Thus, a validated calorimeter is 
urgently needed for the pediatric population including 
new-born and infants and those with high inspired oxygen 
concentrations (up to 60–70%).

Estimation of REE by predictive equations in 
critically ill children

Available predictive equations in healthy children

As an alternative for REE measurement with IC, predictive 
equations can be used to estimate REE. Various equations 
exist and most of them are based on age, sex, body weight 
and height. To estimate REE in critically ill children, 
international nutritional guidelines (10,11,20) recommend 
to estimate REE using the Schofield equation, with an 
accurate weight (21). Table 3 shows the Schofield equation 
for boys and girls, divided by different age categories.

Validity of the commonly used predictive equations of REE 
in critically ill children

According to a worldwide survey (15), most PICUs estimate 
REE using the common predictive equations of Schofield 
(25%) (21), the equation of the World Health Organization 
(25%) (5) and, more surprisingly, the equation of Harris-
Benedict (17%) (22).

The validity of Schofield equations (21) has been 
evaluated in a number of studies in critically ill children (23).  

Table 3 Predictive equations of Schofield using weight (21) 

Age (years) Girls Boys

<3 58.317 × W − 31.1 59.512 × W − 30.4

3–10 20.315 × W + 485.9 22.706 × W + 504.3

10–18 13.384 × W + 692.6 17.686 × W + 658.2

W = weight in kg.
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The findings showed that the two Schofield equations 
[along with Talbot tables (24)] compared with many 
other equations were the least inaccurate (23). However, 
prediction of REE within ±10% compared to REE 
measured by IC (mREE) was only noticed in about 35% 
of children. These equations may underestimate REE in 
young children and overestimate it in older children (25).

Nutritional guidelines (10,11) recommend not using the 
Harris-Benedict equation (22) in critically ill children, as 
there is strong evidence that this equation, developed for 
healthy adults, overestimates REE in the large majority of 
children and leads to a risk of overfeeding.

Validity of specific equations developed to estimate REE in 
ventilated critically ill children

Some equations have been designed for populations 
with specific diseases or conditions including ventilated 
critically ill children; namely the equations of White et al. in  
2000 (26), Meyer et al. in 2012 (27) and Mehta et al. in 
2015 (28). A few studies have assessed the validity of the 
equations of White (26) and Meyer (27), and showed that 
these equations were inaccurate (23,25,29). The equation 
developed by Mehta et al. (28) in 2015 seems promising. 
This equation is not a traditional equation, as it requires 
measurement of VCO2 and it uses a fixed RQ of 0.89 in the 
Weir formula (9). A recent study conducted in children after 
cardiopulmonary bypass showed that the most important 
determinant of its bias was the RQ (30). Another group 
demonstrated that estimating REE with this equation, using 
VCO2 measured by the Servo-I® with the Capnostat-III 
sensor, was accurate for children weighing more than 15 
kg, but not for smaller children (31). The main problem in 
children weighing less than 15 kg was that the used sensor 
did not measure the VCO2 accurately enough. Thus, future 
studies need to assess the validity of this equation, and in 
parallel, a sensor for children weighing less than 15 kg 
needs to be developed.

Influence of critical care conditions on REE in 
critically ill children

Energy expenditure in critically ill children

Critically ill patients are lying in bed in a thermoneutral 
environment, are not physically active, sedated and regularly 
mechanically ventilated. Therefore, energy expenditure 
is lower than in healthy children (Figure 1) and it is often 

assumed that TEE is equal to REE in the acute phase of 
disease. Several studies, with the large majority conducted 
in children on mechanical ventilation, have investigated 
which factors during intensive care treatment might 
influence individual energy expenditure (Table 4).

Day-to-day variability of REE in mechanically ventilated 
children

In mechanically ventilated children with various medical 
and surgical diagnoses, no clinically significant day-to-day 
changes in mREE were observed in the first week after 
PICU admission (7,37,38,50,51,64). This implies that intra-
individually, mREE does not change significantly during 
this period on mechanical ventilation.

Body temperature

Body temperature has been found to be the most 
important factor to influence mREE within the individual  
patient (26). In a study of 74 critically ill, mechanically 
ventilated children, every increment of degree Celsius 
increased mREE by 8% (7). Other studies have also shown 
this positive correlation with factors per degree Celsius 
ranging from 6% to 8% (29,33,34).

Drugs

Sedatives and vasoactive drugs are frequently used in 
critically ill children and have been reported to influence 
mREE (29,37). In a study of 57 mechanically ventilated 
children aged 9 months to 15.8 years, mREE was lower 
than REE estimated by predictive equation in 82% of 
children when sedation was used (29). However, these 
results were not reported in other studies (35,36). In a 
few studies of mechanically ventilated children, the use 
of muscle relaxants decreased mREE from 6% to 10% 
(7,29,39) and in one study even up to 36% (35). In some 
other studies, the use of muscle relaxants did not influence 
mREE (37,38,40).

Diet induced thermogenesis

It has been postulated that the amount and manner of 
nutritional support influences energy expenditure in 
critically ill patients, however no effect has been shown 
in studies so far (29,35). This might be due to the use of 
continuous nutritional support in many studies.
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Physical activity

In one study of seven critically ill children, TEE was 
measured with the double labeled water method during six 
days at the PICU (32). TEE was 20% higher than REE. 
This increased energy expenditure was related with activity 
recorded with accelerometry (32). This means that physical 
activity levels should be accounted for in calculating total 
energy requirements in critically ill children who stay at 
least one week at the PICU.

Specific diseases

Surgery
In infants admitted in PICU after surgery, a few studies 
have found an increase in mREE immediately after surgery 
with a peak at 4 hours for up to 15% (47-49). This increase 
was only temporarily (47-49) and mREE returned rapidly 
to levels comparable to preoperatively (41-43). In studies 
including older children, mREE did not increase after 
surgery (44-46).

Sepsis
In a study of  ten spontaneously breathing septic 
neonates, an increase of 20% in mREE (mean value of  
57±3 kcal/kg per day) was found on days 1–3 after the 

onset of sepsis compared with healthy controls and 15% on 
day 4 (53). In another study of 19 septic neonates, mREE 
increased from 49±13 kcal/kg per day during the acute 
phase to 68±11 kcal/kg per day during the recovery phase of 
sepsis (52). According to the authors, this was probably due 
to the resumption of growth. In older children with sepsis, 
mREE was not different compared to critically ill children 
with other diagnoses or healthy controls (32,36,50,51).

Traumatic brain injury
Although two studies in the eighties have found increased 
mREE of up to two times predicted REE in children after 
severe traumatic brain injury (54,55), more recent studies 
did not show such hypermetabolic state (34,56). The 
authors of the latter studies suggested that this might be 
due to differences in treatment, as guidelines have evolved 
over the years concerning sedation, paralysis and temperate 
control of these patients. In this group, REE might be 
dependent on the phase of disease and the neurologic state 
of the individual patient.

Trauma
Only a few studies have measured REE in children after 
severe trauma in different populations and found both 
decreased and increased mREE (54,57,58).

Table 4 The effect of several factors on mREE (only percentages given if studies showed consistent results)

Factor Increase or decrease Percentage change in relation to mREE References

Physical activity ↑ 20% (32)

Body temperature, per ℃ ↑ Up to 8% (7,29,33,34)

Sedatives ↓/– – (29,35,36)

Muscle relaxants ↓/– – (7,29,35,37-40)

Specific diseases

Surgery – – (41-46)

↑ Up to 15%, post-admission in infants (47-49)

Sepsis – – (32,36,50-52)

↑ Up to 40% during the recovery phase in neonates (52,53)

Traumatic brain injury ↑/– – (34,54-56)

Trauma ↑/↓ – (54,57,58)

Burns, acute phase ↑ Up to 80% (59-63)

Burns, recovery phase ↑ Up to 15% (59,62,63)

↑ increase, ↓ decrease, – no change. REE, resting energy expenditure.
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Burns
A recent systematic review in critically ill adults and children 
has concluded that percentage of body surface area burn 
and post burn day were both associated with mREE (65). 
Some studies observed an increase of mREE in children 
with burns for up to 180% compared to predicted REE in 
the acute phase (59-63). Moreover, although REE decreased 
upon recovery, mREE remained significantly higher (up to 
15%) compared to predicted REE up to months and even 
years postburn (59,62,63). This hypermetabolic state is 
considered to be mediated by increased pro-inflammatory 
cytokines (61,66,67), catecholamines and stress hormones 
(61,62) in burn patients.

In conclusion, these studies show that the main factors 
that may influence REE in critically ill children are body 
temperature and physical activity. Moreover, burns may 
have a significant clinical impact on energy expenditure.

Optimal energy intake in different phases of 
disease using REE

Energy requirements in the acute and stable phases of 
critical illness

The acute phase is characterized by the requirement 
of vital organ support and is accompanied by a stress 
response, resulting in hypercatabolism (68). The pathways 

of energy production during the acute phase of critical 
illness are altered and alternative substrates are used as a 
result of the loss of control of energy substrate utilization 
by their availability. Traditionally, overfeeding and 
underfeeding were defined as the percentage of energy 
delivery related to the mREE; an intake of >110% mREE 
indicated overfeeding and an intake of <90% mREE 
indicated underfeeding (69). However, during the acute 
phase of critical illness, endogenous production of energy 
provides the majority of energy requirements (up to 75%), 
irrespective of the exogenous provided amount of energy 
(Figure 2) (71). This results in a considerable risk for an 
energy imbalance, which is associated with poor outcome.

In a recent retrospective study, patients that were overfed 
(>110% mREE) had a significant longer PICU and hospital 
stays compared to those who were adequately fed (90–110% 
mREE) (72). Moreover, in a large multicenter randomized 
controlled trial it was shown that withholding parenteral 
nutrition (PN) until day 8 of admission, as compared with 
starting PN early (<24 hours) when enteral nutrition (EN) 
was insufficient, and thereby accepting significantly lower 
energy intakes compared to predicted REE, significantly 
decreased nosocomial infection and accelerated recovery (2).

New PICU guidelines advocate that in the acute phase 
of critical illness energy intake should not exceed REE 
(10,11). Furthermore, it is recommended to increase EN 

Figure 2 Energy requirements during different phases of critical illness; % of REE. Acute phase: first phase after event, characterized by 
requirement of (escalating) vital organ support. Stable phase: stabilization or weaning of vital organ support, while the different aspects of 
the stress response are not (completely) resolved. Recovery phase: clinical mobilization with normalization of neuro-endocrine, immunologic 
and metabolic alterations. Adapted from Joosten et al. (70). REE, resting energy expenditure.
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in a stepwise fashion until delivery goal is achieved using a 
feeding protocol or guideline and to target an energy intake 
by the end of the first week in the PICU of at least two-
thirds of the daily energy requirements (Table 5) (10,11). 
These guidelines are based on observational studies that 
showed better clinical outcomes in patients who received 
adequate nutritional intake (1,3,72). However, not all of 
these studies measured REE. At this stage, no interventional 
studies determined the precise energy intake related to 
improved outcomes in critically ill children. In a systematic 
review (73), followed by an observational study (7), it was 
observed that a minimum intake of 57 kcal/kg per day (and 
1.5 g/kg per day of protein) was associated with positive 
nitrogen balance.

Energy requirements during the recovery phase of critical 
illness

The recovery phase starts when the patient is mobilized and 
the stress response is resolving and normalized. This phase 
could last up to several months. During this phase, the body 
shifts further from catabolism to anabolism with protein 
synthesis exceeding protein breakdown, which results in 
tissue repair and (catch-up) growth (68). Thereby, energy 
requirements may rise considerably, even exceeding normal 
energy requirements of healthy children (Figure 2) (70,74). 
Recent guidelines state that, after the acute phase, energy 
intake should account for energy debt, physical activity, 
rehabilitation and growth (Table 5) (10). Only a few studies 
have investigated the energy requirements in the recovery 
phase, mostly in children with heart disease and burns. 
Recently, it was shown in critically ill infants mainly with 
heart disease and with a mean PICU stay of 50 days that 
weight gain was achieved comparable with healthy children 
by following a nutritional protocol with energy target set at 
2× predicted REE (75). In infants recovering from surgical 
repair of congenital heart disease, caloric goals of 2–3× REE 

(120–150 kcal/kg/day) are presumed to be necessary for 
weight gain and even up to 4× REE (200 kcal/kg/day) for 
infants with remained hemodynamically significant lesions 
(76,77). In burned patients, a hypermetabolic state with 
increased nutritional demands has been shown even up to 
two years after injury (59,62,78). One study, published in 
1988, showed that energy intake should be approximately 
1.6× REE to maintain weight in this group (79).

The use of the RQ

The RQ may help evaluate substrate utilization and/
or nutritional support, and determine overfeeding and 
underfeeding. As shown in Table 1, fat oxidation results in 
an RQ of 0.7, whereas protein and carbohydrate oxidation 
result in RQs of 0.8 and 1.0, respectively. Carbohydrate 
intake higher than oxidative capacity may result in 
lipogenesis, leading to an RQ >1.0, which makes it a possible 
marker for detecting overfeeding (80). Moreover, the use 
of endogenous fat stores to meet energy requirements 
can decrease the RQ below 0.85 (59). However, cut-
off values for the RQ (<0.85, 0.85–1.0, >1.0) correspond 
only moderately with the currently used criteria of under- 
and overfeeding (the ratio of intake and mREE) (81,82). 
Alternatively, the use of a difference between measured RQ 
and predicted RQ [using the proportions of carbohydrates 
and fats in nutritional intake (RQmacr)], of more than 
>0.05 has been proposed as a definition of overfeeding (83). 
This definition might be a more useful marker, as the RQ 
can alter during PICU admission due to change in phase 
of disease. Hence, the RQ can be used to determine under- 
and overfeeding and to monitor the tolerance of nutritional 
support. However, the RQ cannot be used to “fine-tune” 
nutritional therapy because each patient has his/her own 
metabolic “fingerprint” or “signature” inheriting a unique 
metabolic machinery capable of generating a particular, and 
not always predictable, response during the different phase 

Table 5 Prescribing nutrition in different phases of disease

Phase Enteral nutrition Parenteral nutrition Energy target

Acute phase Increase EN in stepwise manner No PN Do not exceed 100% REE

Stable phase Increase EN further, if possible Start PN >1 week after PICU 
admission, if energy targets are not met 

Increase of %REE depending on age 
and disease

Recovery phase Increase EN further, if possible Continue PN if necessary to achieve 
energy targets

Up to 200% REE (and occasionally up to 
400% REE). Target for (catch-up) growth

EN, enteral nutrition; PN, parenteral nutrition; REE, resting energy expenditure.
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of the stress response.
Overall, measurements of REE and RQ after the acute 

phase of disease may be helpful to guide nutritional therapy 
and to increase nutritional intake in relation to REE until 
(catch-up) growth and tissue repair are achieved.

Conclusions

In critically ill children, clinicians have the complex role 
of prescribing an optimal energy intake, avoiding both 
underfeeding and overfeeding. During the acute phase, 
energy intake should be increased progressively according 
to the tolerance of the patients and not exceed REE, 
predicted by Schofield equation (21). Afterwards, energy 
intake may be increased considering the energy debt, 
physical activity, rehabilitation and growth. Usually this 
means that the target energy intake should be between 
100% and 200% of REE. In some patients, measurement 
of REE using a validated calorimeter may be needed. In 
addition to measured REE, the RQ might be a helpful 
tool as well. The presence of a nutrition team including a 
dedicated dietitian is recommended to guide energy intake 
and nutritional support.

Future studies need to validate a new calorimeter for 
this specific population, including neonates and infants and 
patients on high inspired oxygen concentrations. In parallel, 
the development of more accurate predictive equations of 
REE or other methods to measure energy expenditure is 
needed.
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